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GENERAL INTRODUCTION 

Project Significance 

Extruding-expelling (EE) is an alternative low-cost technology to extract oil from soybean. The soybean 

meal that is produced has limited applications due to heat denaturation of protein. If the functional 

properties of soy protein in EE meal can be improved, EE meal and its enriched protein products will have 

more markets in the food industry. EE is uniquely suitable for identity-preserved soybean processing due 

to its small scale and flexibility. The success of EE technology will encourage producing specialty 

soybeans, which usually have higher returns for the farmers. More producer income and job opportunities 

will result and be retained in agricultural communities where such a technology is utilized. 

 

Characteristics and Significance of Extruding-Expelling Process 

In 1969, a Des Moines, IA, company, Triple “F” Inc., patented a dry soybean extruder to produce animal 

feeds (1). Unlike alternative extrusion technologies, dry extrusion does not involve steam generation and 

injection into the extruder, hence the invention was termed “dry extrusion.” The extruder was designed to 

be powered by a farm tractor so that livestock feed could be produced on the farm where used. Extrusion 

cooking was important to inactivate trypsin inhibitor and improve feed conversion. Because of the rapid 

acceptance of dry extrusion, another company, Insta-Pro International, was chartered to manufacture and 

market the dry extruders (2). 

Nelson et al.(3) were the first to use dry extrusion to replace steam-heated driers to prepare 

soybeans for screw pressing and a new concept of combining extrusion with expelling was developed to 



www.manaraa.com

  2

extract oil from soybeans. This continuous process involved pressing the hot semi-fluid extrudate from dry 

extrusion. Over 70% oil yield was achieved in a single pass, leaving cake containing 50% protein and 6% 

residual oil, while achieving 90% inactivation of trypsin inhibitors. Insta-Pro International added screw 

presses (expellers) to their product line under the trademark name of ExPressTM to commercialize this 

concept. 

In the first step of the process, the friction, shear, and pressure generated during dry extrusion 

disrupted the soybean cell structure, denatured proteins, and released the oil from the spherosomes. In the 

second step, the released oil was removed from the solids by mechanically pressing before the solids 

cooled. This technology couples dry-extrusion with screw pressing or expelling, hence the name 

extruding-expelling (EE) became accepted. 

A major advantage of the EE process compared with the modern solvent-extraction process using 

hexane, which dominates the oil seed processing today, is that EE is purely a mechanical process and no 

organic solvent is involved, which avoids hazardous emissions and even explosions. Due to the relatively 

simple machinery used, EE processing requires low capital investment and is ideal for de-centralized 

soybean processing in rural areas close to where livestock are fed as well as for identity-preserved (IP) 

processing of specialty soybeans. 

 

Properties and Applications of EE Products 

Most EE processing is used to produce high-energy, high-protein livestock feed because EE meal has 

significant amounts of protein and residual oil, and the anti-nutritional factors, such as trypsin inhibitors, 
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are inactivated. Feeding experiments using chickens have shown that higher extrusion temperatures 

improved the digestibility of EE meals (4). Extruding at 138-154˚C produced protein with quality close to 

that of toasted, hexane-defatted soybean meal when used as poultry feed. Studies on the digestibilities of 

EE meals with or without hulls indicated that EE meals had higher apparent ideal digestibility of amino 

acids, higher digestible and metabolizable energy than white flakes (5). 

Additional studies have shown that the body-weight-gain/feed ratio of growing pigs increased 

when fed EE meals exposed to higher extrusion temperatures, with the most significant 

body-weight-gain/feed ratio increase at an extrusion temperature of 149°C (6). Pigs fed EE meal had high 

body-weight-gain/feed ratios compared with those fed toasted, solvent-extracted meal when the pigs grew 

from 25 to 61 Kg. For the overall growing period, the average daily gain (ADG) was not affected but 

average daily feed intake (ADFI) declined, indicating feed efficiency improved when the pigs were fed EE 

meal with or without added fat (6). 

EE soybean oil, having a pleasant nutty flavor, can be used for food applications with minimal 

refining. Compared with solvent-extracted soybean oil, EE oil has lower levels of free fatty acids and 

dramatically lower levels of phospholipids. EE oil typically has higher peroxide values indicating more 

oxidation than solvent-extracted soybean oil, which was attributed to prolonged heating during EE 

processing and poor oil storage conditions at EE plants (7). A natural oil refining technique, in which the 

EE oil was subjected to settling at refrigeration temperature, followed by water-degumming, free fatty acid 

adsorption, and mild deodorization (lower temperature than typical), was shown to be effective in 

producing stable and high quality soybean oil with more tocopherols and carotenoids retained than 
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conventionally refined soybean oil (8). Commercial trials have shown physically refined EE oil to be a 

promising frying oil. Compared with solvent-extracted, partially hydrogenated oil, the minimally refined 

EE oil had longer frying life, did not contain trans-fatty acids, and the fried products tasted better, although 

its Oxidation Stability Index (OSI) value tended to be lower (9). The mechanism underlying the longer 

frying life despite low OSI is yet to be understood. 

The partially defatted EE meals made from dehulled soybeans can be further processed into foods 

or food ingredients (10). By changing EE processing parameters, EE meals with different residual oil 

contents and protein dispersibility indices (PDI, an indirect measurement of soluble and native protein) can 

be readily produced for use in different applications (11). Pressing twice reduced the residual oil while 

maintaining PDI of the EE meal compared with single-pressing. As expected, PDI and residual oil have 

shown a strong correlation. The temperature in the extruder, which could be manipulated by adjusting the 

feeding and extruder configurations, negatively correlated with both PDI and residual oil content. High 

temperature also inactivated trypsin inhibitor and lipoxgenase. EE processing can be tailored to produce 

EE meals with suitable characteristics for different applications. For example, lower extrusion temperature 

can result in EE meal with higher PDI and moderate lipoxgenase activity, which may be desirable in 

baking applications (11). Lipoxygenase activity can improve mixing properties of bread dough and bleach 

carotenoids. 

The relationships between PDI/residual oil content and major functionalities, such as solubility, 

water-holding capacity, fat-binding capacity, emulsification capacity, etc, were investigated by Heywood 

et al. (12). They found that EE meals with lower PDI had lower emulsification capacities than those with 
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higher PDI. PDI and residual oil were negatively correlated with water-holding capacity, but positively 

correlated to fat-binding capacity. Similar relationships between residual oil and water-holding capacity 

were observed in texturized EE meal (13). No significant difference, however, was found in water-holding 

capacities of texturized proteins over a range of PDI values. High residual oil content resulted in lower 

hardness values for the texturized proteins, which was attributed to oil inhibition of protein interactions 

during texturization (13). EE meal-wheat flour blend had comparable water-holding capacity to defatted 

soy flour-wheat flour blend although EE meal had significant amount of oil (14). 

Sensory evaluation of texturized EE-meal-extended ground-beef patties with controls of 

non-extended beef and commercial patties has been conducted (13). The cooking loss of texturized EE 

meal-extended ground-beef patties was similar to that of the pure-beef patties or commercial controls. 

Trained panelists detected soy flavor in patties prepared with texturized proteins from EE meal having 

moderate PDI but they found the overall taste was similar to that of the control (13). This study 

demonstrated that EE meal can be further extruded to produce texturized low-fat soy protein products for 

food applications. 

The low processing capacity and flexibility make the EE technique ideal for identity-preserved 

processing to produce specialty soybean ingredients, such as soy oil and soy proteins with claims of 

“organic,” “all natural,” or “non-GMO,” depending on the beans processed. The volumes and market 

shares of food products with such claims are steadily increasing, being driven by the demands of 

health-conscious customers. For example, natural products sales in the United States enjoyed a 9.1% 

growth rate in 2005 with $51.39 billion in total sales (15). 
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Soy Protein Structure 

Proteins constitute about 40% of dry mass of the soybean seed (the rest being 34% carbohydrates, 21% oil, 

and 5% ash) (16). Glycinin and β-conglycinin account for 51 and 19% on average, respectively, of the 

seed protein (17). They are the two major storage proteins that act as nitrogen reservoirs for the 

geminating embryo. The molecular weights of glycinin and β-conglycinin are about 350 and 180 kDa (18), 

when each exists as its typical structure, i.e. hexamer and trimer, respectively. Glycinin contains more 

sulfur than β-conglycinin. 

Glycinin has five different subunits, A1aB1b, A1bB2, A2B1a, A3B4, and A5A4B3, which are 

composed of two groups of components, acidic (A and a) and basic (B and b) polypeptides, and are 

covalently bridged by disulfide bonds (except A4) (18-20). The molecular sizes of the acidic and basic 

components are 38 and 20 kDa (21), respectively. Each pair of acidic and basic components is encoded by 

one gene (22). The final polypeptides are the products of complex proteolytic cleavage during translation 

(22-23). The five types of glycinin subunits can be separated into two groups (group I: A1aB1b, A1bB2, 

and A2B1a; group II: A3B4, and A5A4B3). Group I subunits have molecular weights of 58 kDa and 5-8 

methionine groups, while those in group II have molecular weights of 62-69 kDa and about 3 methionine 

groups. The sequence homology between subunits is greater than 80% within the same group but only 

40-50% between subunits across different groups (18). 

The association and dissociation of the subunits are influenced by various factors. Glycinin exists 

as hexamers at pH 7.6 and 0.5 ionic strength, and trimers at pH 3.8 and 0.03 ionic strength. Between two 
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extreme conditions glycinin exists as an intermediate mixture of both hexamers and trimers (24). 

Proteolytic tests verified that the acidic polypeptides are located in the exterior of the glycinin complex 

(24). 

β-Conglycinin is a trimeric glycoprotein containing about 5% carbohydrates, and consists of three 

subunit types, α, α', and β with molecular sizes of about 67, 71, and 50 kDa (106), and having 2, 2, and 1 

N-glycosylation consensus sequences, respectively (25). Glycosylation occurs during translation and the 

polypeptides were modified after translation in a slow and complex process (23). The α and α' subunits 

have extension regions of 125 and 141 residues, respectively, and a core region of 418 residues, whereas 

the β subunit has a core region of only 416 residues (25). The core structure is responsible for thermal 

stability and surface hydrophobicity while the extension regions render high solubility and emulsifying 

properties to the subunits (26). The carbohydrate moieties tend to prevent the formation of heat-induced 

aggregates (26). For the β-conglycinin heterotrimers, hydrophobicity and solubility were mainly decided 

by the α or α′ subunits (27). Comparisons of circular dichroism spectra between naturally occurring α, α′, 

and β homotrimers with their recombinant counterparts (without N-linked glycans) indicated that the 

carbohydrate moieties do not have a big influence on the secondary and probably the 3-D structures. The 

recombinant homotrimers had similar thermal stability as the native ones. However, the existence of 

glycan chains increased the solubility of each subunits (28). Contrary to glycinin, the subunits of 

β-conglycinin are associated by hydrophobic and hydrogen bindings and no covalent disulfide bonds are 

involved, which gives β-conglycinin several heterogeneities (29). β-Conglycinin has an isoelectric point of 

4.8-4.9 (30). 
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The structure of β-conglycinin can undergo dramatic changes during storage at extreme 

conditions. For example, the extraction yield of extractable β-conglycinin dropped from 12.6 to 0.2% after 

soybean stored at 84% relative humidity and 30°C for 9 mo. The decrease of β-conglycinin extraction was 

attributed to the formation of intramolecular disulfide bonds based on the detection of disulfide bonds and 

unchanged molecular mass after storage (31). Similar observations were found in glycinin (32). 

 

Soy Protein Denaturation 

The compositional and structural differences of the two proteins give them different physiochemical 

properties, such as different isoelectric points, different denaturation temperature and functionalities. Soy 

proteins are thermodynamically most stable in their native state as in the seeds. When their secondary, 

tertiary, and quaternary structures change while the primary structure or linear peptide bonds remain 

intact, it is considered “denaturation”. Many factors can cause protein to denature, such as physical agents 

(heat, pressure, shear, etc.) and chemical agents (acid, alkali, organic solvents, surface active chemicals, 

salts, etc.) (33). The denaturation or the loss of native ordered structure of the protein usually causes the 

loss of bioactivity. The most common denaturation agents for soy proteins are heat and pH. Heat treatment 

significantly reduced the yield of soy protein extraction by decreasing its solubility and more heat 

treatment usually results in greater solubility loss (34-35). The insolubility of denatured protein in neutral 

or mild alkaline conditions makes soy protein difficult to be separated from insoluble fractions such as 

fiber, which results in low SPI yield. 
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Wolf et al. (34) studied the behavior of soybean 11S protein (glycinin) heated at 100ºC in an 

aqueous system at different ionic strengths. They found that heating breaks the quaternary structure of 

protein into two major groups of subunits. One group consisted of soluble subunits even after prolonged 

heating, the other interacted with each other to form soluble aggregates within a short time but they 

continued to grow into larger aggregates until insoluble precipitates formed. The denaturation product of 

glycinin heated at temperature 100ºC and 0.5 ionic strength also exhibited two peaks on gel filtration 

chromatography (36). SDS-gel electrophoresis showed that one peak had highly polymerized subunit 

complexes, while the other contained a basic subunit monomer and seven oligomers formed by different 

proportions of basic subunits to an acidic subunit (36). Heating glycinin alone produced soluble aggregates 

that were composed exclusively of the basic glycinin subunits and their association was through 

hydrophobic interactions (37-38). Heating at 80ºC caused dissociation of both glycinin and β-conglycinin 

and the dissociated subunits formed soluble aggregates with molecular weights of over 1 M (39). The 

aggregates consisted of mainly the basic glycinin subunit with β-conglycinin β subunit (39). Apparently, 

heat denaturation was a progressive process involving dissociation and re-association of various 

polypeptides. 

Studies by Lakemond et al. (40) showed that the disulfide bonds between acidic and basic 

subunits were broken when heated at pH 7.6, where the glycinin was present as hexamers. Glycinin partly 

dissociated into the 7S complex at pH 3.8 but at pH 5.2, near the isoelectric point of glycinin, no 

disruption was found. Koshiyama et al. (41) found that at pH 7.6 as ionic strength increased from 0.1 to 

0.5, the glycinin denaturation temperature shifted from 78 to 90ºC. Glycinin showed endothermic 
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denaturation when heated in salt solution, whereas exothermic denaturation was observed when heated 

with the presence of alcohols, such as 2-mercaptoethanol, ethanol, or 2-propanol. If 2-mercaptoethanol 

concentration was increased from 0.01 to 10%, the exothermic denaturation temperature dropped from 95 

to 46°C (42). These observations demonstrated that disulfide bonds and hydrophobic interactions affected 

the thermal behavior of soy glycinin (42). The surface hydrophobicity and viscosity of glycinin increased 

by four and two times, respectively, after treatment with 5 mM dithiothreitol, which reduces the disulfide 

bonds (43). Cleavage of the intermolecular and intramolecular disulfide bonds greatly improved the 

proteolysis of glycinin (44) due to the exposure of more sites of enzymatic attack. Studies on the binding 

of Cresol Red and Acid Orange 10 to soy protein after different extents of heating suggested that more 

heat treatment caused progressive exposure of hydrophobic residues, which bonded with dyes (45). 

Heating duration dramatically affected the functionalities of denatured soy protein. Soy protein 

solubility was reduced after prolonged heating (30 min) and aggregates formed and water-holding capacity 

and viscosity increased; but if heated for a short time (5 min), the soy protein had high solubility and 

surface hydrophobicity (46-47). Heat-denatured soy protein has low solubility but high water-holding 

capacity because the matrix formed by denatured protein entraps a considerable amount of water (48). 

Similar results were found by Arrese et al. (49). Water-imbibing capacity increases with more 

denaturation. Unfolded soy protein peptides are necessary to form a matrix system that retains more water 

(49). Emulsification capacity increases after heating soy protein for a short period, while treated with 

reducing agents (i.e. sodium sulfide) and urea. The treated protein had high surface hydrophobicity and 

solubility (50-52). 
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In summary, heating dissociates the subunits in native soy protein structure and the subunits 

re-associate into large but still soluble aggregates. Further heat treatment can cause disulfide bonds to 

cleave and the polypeptides to unfold, exposing more hydrophobic groups and resulting in larger insoluble 

aggregates. The newly formed complexes have different functional properties with the native soy protein. 

Acid treatment (except pH around the isoelectric point) tended to increase soy protein 

functionality. For example, when a soy protein solution was heated at 95°C in 0.05 N HCl for 30 min, 

solubility, emulsifying and foaming properties improved (53). Deamidation occurred at the same time. The 

improved functionalities are believed to be the results of increased surface hydrophobicity caused by acid 

denaturation (53). Soy protein extracted after being solublized at pH 1.5-3.5 was more soluble than that 

made after alkali solublization and then isoelectric precipitation (54). 

Isoelectric precipitation during conventional soy protein extraction, however, seemed to damage 

soy protein fucntionalities. Nash et al. (55) compared the solubilities of water-extracted proteins acidified 

to pH 4.5 and then equilibrated in pH 7.6 buffer with proteins having the same treatment except 

acidification. They found that longer treatment time and higher acidity caused more denaturation. Protein 

solubility decreased by 12% when acidified to pH 4.5 for 2 h (55). 

Alkali is widely used to solublize soy proteins during SPI preparation to increase protein yield. 

When a soy protein suspension was treated with alkali to pH ≥ 11, the disulfide bonds were cleaved, 

subunits dissociated and unfolded, whereas only aggregation and hydration were observed at pH ≤ 11 (56). 

When the pH was about 12.8, the hydrophobic core was disrupted (56). Apparently, alkali solublizes soy 
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protein by breaking disulfide bonds and hydrogen and hydrophobic interactions, making the native rigidly 

packed soy protein more dispersible in aqueous systems (56). 

In addition to changing structure, high pH can produce undesirable chemical modifications to soy 

protein. These undesirable changes include the destruction of amino acids and production of amino acid 

derivatives by racemization and crosslinking of amino acids (57), which may reduce digestibility and 

nutritional value of the proteins (57). For example, cystine started to be destroyed at pH above 11 and the 

loss increased with increasing pH (56). Heating soy protein solutions at pH 12.5 and 65ºC for 2 h 

produced about 2% lysinoalanine and the total sulfur amino acid bioavailability was reduced by 71% (58). 

Similar results were found by Wu et al. (59), although SPI treated at pH 12 and 100ºC for 1 h improved 

most functional properties (such as solubility and emulsification), significant amounts of lysinoalanine 

were produced. Lysinoalanine production increased with temperature until about 70ºC, after which there 

was no significant change in lysinoalanine content (60). Studies by Friedman (61) showed that high pH 

and temperature and long exposure time favored lysinoalanine formation; however, the formation of 

lysinoalanine could be suppressed by adding cysteine, copper salts, dimethyl sulfoxide, and glucose (62). 

The toxicity of lysinoalanine in humans is unresolved (63). 

As discussed before, soy protein undergoes a progression of unfolding, association and 

dissociation of polypeptides during denaturation. When the concentration of glycinin or β-conglycinin 

solution is right, the protein can aggregate to form a vast interlinked structure called gel. This is an 

important characteristic of soy protein denaturation. For example, when heated at 100ºC for 1 min, both 

0.5 and 5% glycinin solutions form soluble aggregates. After prolonged heating, only the 5% glycinin 
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solution formed gel. Many believe that the soluble aggregates were intermediates during gel formation 

(64). The molecular weight of the aggregates formed in 5% glycinin solution heated at 100ºC increased 

with heating time until gelation (65). Transmission electron microscopic observations suggested that the 

soluble glycinin aggregates formed strand-like structures, which interacted with each other to form a 

three-dimensional matrix (65). Gels with similar structures were formed when 10% glycinin solution was 

heated at 100°C for both 1 and 20 min (66). Nevertheless, the hardness of the gel produced after 1 min was 

only 1/4 that produced after 20 min of heating. The former was totally dissolved in buffer with 

denaturation agents, such as 2-mercaptoethanol or urea, whereas the latter had only a fraction dissolved 

with the same treatment. This demonstrated that both disulfide bonds and non-covalent interactions 

formed during glycinin gelation. Prolonged heating produced more and/or stronger non-covalent forces, 

which may include hydrophobic interactions or hydrogen bonds (66). Renkema et al. (67) observed similar 

phenomena. Their study has shown that the stiffness of the gel formed at gelation temperature increased 

with the concentration of denatured proteins and the stiffness of gel formed at gel onset temperature 

increased with prolonged time. These increases may be due to the rearrangement of denatured protein in 

the gel network or more proteins incorporated into the gel structures (67). 

pH had profound effects on soy protein gelation. The gel formed at pH ≤ 6 had higher stiffness 

values than those formed at pH ≥ 6 (68). This observation suggested that fewer protein components 

participated in the gel network at pH ≥ 5 than that at pH 3-5. At pH 7.6 with prolonged heating, extensive 

rearrangement was observed in the gel matrix. Similar rearrangement was not found at pH 3.8 (68). 
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Hermansson (69) also showed that glycinin aggregates formed strand-like structures in gel. The gel 

structure formed by conglycinin, however, looked more irregular or having more branches. 

Since the denaturation properties of glycinin and β-conglycinin are slightly different, it was not 

surprising that the gelation properties of glycinin/β-conglycinin mixture were different from those of 

glycinin (70). The proportion of the two proteins influenced gel hardness, gel turbidity and gelation time. 

The two proteins formed soluble aggregates by non-covalent interactions in the process of gelation (70). 

In summary, the denaturation pattern of soy protein is the result of a combination of various 

factors, such as heat, pH, ionic strength, and the presence of solvent or reducing agent. The functionalities 

of protein depend on the specific conditions of a denaturation process, even the same factor at different 

values may produce protein with totally different properties. 

 

Soybean Protease Inhibitors 

There are two major soybean protease inhibitors in soybeans, Kunitz trypsin inhibitor (KTI) and 

Bowman-Birk inhibitor (BBI). They are the soybean’s defense weapons again insect attacks (71). Their 

structures are unique compared with storage proteins such as glycinin and β-conglycinin. KTI is a 

sphere-shaped protein with dimensions of 45Å×42 Å×40 Å. It has 12 antiparallel β-strands connected by 

loops and one 310-helix. It consists of three similar subdomains each composed of four β-strands (about 

60 amino acid residues each). The three subdomains are arranged in a way that gives KTI a nearly 3-fold 

symmetry. Two disulfide bonds stabilize such a structure by interlinking the loops between two ends (72). 

BBI has two reactive subdomains, one binds chymotrypsin, the other binds trypsin, all through insertion 
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loop motifs. The two subdomains are composed of two β-hairpin structures, stabilized by disulfide bonds 

and each has three antiparallel β-strands. A unique conformation feature of BBI is that its two hydrophobic 

patches expose to the environment, and an electronically charged cluster and five water molecules are 

buried in the interior. The existence of seven disulfide bonds, salt bridge, and probably hydrogen bonds are 

the major forces in maintaining such unusual structure (73). Studies on the crystal structure of BBI and 

bovine trypsin complex showed that one subdomain specifically bonded trypsin through interactions of 

polar residues, hydrophilic links and weak hydrophobic forces. While another subdomain interacted with 

both trypsin and chymotrypsin through close hydrophobic contacts across the interface. A buried 

salt-bridge responsible for trypsin binding was stabilized in a polar environment (74). 

Due to their protease-inhibiting activity, KTI and BBI have carcinogenesis suppression functions. 

Their potentials as chemopreventive agents were extensively studied (75). For example, KTI induced 

programmed cell death to human leukemia Jurkat cell (76), suppressed the UV-induced up-regulation of 

cytokine expression in human skin to prevent further damage (77). KTI prevented ovarian cancer cell 

invasion by blocking urokinase up-regulation (78). BBI suppressed prostate carcinogenesis in rats (79), 

suppressed breast cancer cells by inhibiting proteasome (80), inhibited tumor growth by inducing the 

expression of gene Connexin 43 (81), reduced lung cancer cells in mice (82).  

 

Major Allergens in Soybeans 

Components of soybeans that can cause allergic reaction in some consumers also draw considerable 

attentions from the scientific community. The major allergic soy protein is Gly m Bd 30 K, an N-linked 
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glycoprotein (83) that exists in the protein body as a glycoprotein precursor during soybean seed 

maturation (84). This protein can bind with α and α ′subunits of β-conglycinin through disulfide bonds in 

soy milk (85). Another major allergic soy protein, Gly m Bd 28 K, also a glycoprotein, was also identified 

(86). Gly m 1.0101 and Gly m 1.0102, designed to transfer lipids from liposomes to mitochondria, are two 

significant allergic proteins. Both proteins are highly hydrophobic (87). 

Immunological analysis using pig plasma showed that α subunit of β-conglycinin was a potential 

allergen in pigs (88, 89). This subunit was resistant to pepsin digestion. Deglycosylation did not eliminate 

the immunoreactivity. The immunogenic epitopes were identified as two β-strands and a loop linking 

them. These epitopes are located on the surface of the protein (88). Similar results were found using E. coli 

produced recombinant αα′-subunit without glycosylation (90). Its reaction with antibodies implied 

glycosylation is not necessary for the immunogenicity. The immunoreactive domains are highly 

hydrophilic and located in the extension region (90). 

Although other subunits of glycinin may also have allergenicity, the strongest allergenicity lies in 

its acidic subunits (91). Soybean Kunitz trypsin inhibitor is also a potent allergen whose allergenicity may 

come from its stable anti-parallel β-sheet structure (92). 

 

Major Functional Properties of Soy Proteins in Foods 

Commercial soy protein products are mixtures of proteins and other components. Their functional 

properties important in food products are determined by their concentration and their collective 

physicochemical properties of each individual component. Major functional properties of soy proteins 
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include interaction with water (solubility, water-binding, water-holding capacities, viscosity, etc.), with 

oils and fats (emulsification properties and fat-binding), with air and water (foaming). Gelation is the 

interaction among protein molecules to form a three-dimensional structure in an aqueous system. There is 

no single standard method to quantify each functional property and a wide variety of measurement 

conditions are used by different workers (14, 35). Nevertheless, the major soy protein functional properties 

are summarized in the following paragraphs. 

Solubility is probably the most important characteristic of soy protein. In aqueous systems, high 

solubility is usually desirable because soluble proteins have sufficient interactions with other components. 

Less processed soy protein products generally have better solubility. Heat, isoelectric pH, and alcohol 

reduce solubility. However, some solubility-reducing processing is necessary, such as heating to inactivate 

the anti-nutritional factors and to reduce the microorganism counts for adequate food safety (35). The 

reduced solubility/dispersibility can be compensated by either further processing (such as increasing pH) 

or by addition of other ingredients (i.e., lecithin). 

Water-binding is the amount of water bound by the proteins that cannot be removed by centrifugal 

force. The hydration of soy protein concentrate has been studied by nuclear magnetic resonance (NMR) 

and sorption isotherm methods (93). It found that about 0.065 g water/g solids is tightly bound (this water 

may bind with ionic or polar sites of the protein), and about 0.25 g water/g solids is loosely bound, above 

which the water is considered bulk water. The hydration of soy protein concentrate by vapor starts with 

random sorption of water on the protein particle surfaces, followed by redistribution to highly polar sites, 

and then binding at lower affinity sites as “loosely bound” water (94). In general, soy protein products 
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with higher protein contents bind more water but the relationship is not linear (95). The water-binding has 

no relationship with particle size of the protein product, because the tightly-bound water is associated with 

the polar amino acid residues instead of being adsorbed at the particle surface. Heat denaturation can 

improve the water-binding capacity of soy protein, while highly soluble protein has low water-binding 

properties (35). Contrary to solubility, pH had little effect on water-binding capacity of the soy protein, 

indicating that there is no direct relationship between water-binding capacity and solubility (96). 

Water-holding capacity is the ability of soy protein to trap water in the food system. 

Water-holding capacity is important in meat products because it influences juiciness and texture of the 

final products (97). Protein products with higher soy protein concentration exhibited higher water-holding 

capacity and alkali treatment improved the water-holding capacity of soy protein (98). When wheat flour 

blended with soy flours, its water-holding capacity increased (99). Both pH and temperature significantly 

affected the water-holding capacity of SPI and there was interaction between pH and temperature (100). 

At pH 7, the maximum water-holding capacity was achieved around temperature of 40ºC. Increasing the 

pH from 5 to 7 dramatically increased water-holding capacities. Residual fat in the soy protein reduces the 

water-holding capacity (13, 101). 

The stability of oils/fats in an aqueous system is critical to many food systems. Soy protein can 

maintain emulsion stability because it lowers interfacial tension between hydrophilic and hydrophobic 

phases, i.e., at the boundary between water and lipids. Soy protein with higher solubility usually has higher 

emulsification capacity (35, 102), whereas insoluble soy proteins are poor emulsifiers (52). pH affects 

emulsification properties. Data showed that both emulsification capacity and stability corresponded 
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positively to the solubility profile, i.e. decreasing to lowest level in the isoelectric region (103). 

Emulsification capacity is influenced by temperature and other components in the system (104). Soy 

protein treated by heat and urea had higher emulsification capacity and stability, as well as hydrophobicity 

(105), which was attributed to the cleavage of disulfide bonds and exposure of more hydrophobic surfaces. 

Similar observations that short-time heating, alkali or Na2SO3 and urea increased the emulsification 

properties of soy protein isolate were found by Petruccelli et al. (52). The high emulsification activities 

from these treatments were attributed to the change of association-dissociation degrees. Desirable 

emulsification properties usually correspond to high surface hydrophobicity and solubility. 

Due to the heterogeneity of soy protein, protein fractions with better emulsification properties can 

be extracted by tailoring the preparation conditions. For example, soy protein fractions recovered at 

isoelectric point range of 5.1-5.6 had superior emulsification stability and activity than those recovered at 

the isoelectric point of around 4.5 (106). Acidic glycinin subunits have better emulsification properties 

than whole glycinin and the difference was contributed to the likelihood that the hydrophobic residues 

buried in the whole glycinin molecules are released after being fractionated into subunits (107). 

Emulsification properties can be modified by many approaches, such as partial hydrolysis (103), 

succinylation (108), acylation (109), lipohilization (110), lecithin complexing (111-112), and ethanol 

treatment (113). Tryptic digestion of heat-denatured soy protein yielded three fractions: precipitate 

fraction, high molecular weight fraction, and low molecular weight fraction (with molecular weights of 30, 

20, and 10 kDa, respectively) (103). The precipitate fraction had poorer emulsification capacities than 
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unhydrolyzed soy protein, while the high molecular weight fraction had better emulsification and stability 

than native soy protein if the digestion was done in short time (103). 

Succinylation improved the emulsification capacity by three-fold (108). Acetylation of glycinin 

significantly increased the emulsifying activity of the protein at pH above isoelectric point and more 

acetylation resulted in larger increase (109). When palmitic acyl residue was incorporated into soybean 

glycinin, the emulsifying activity of the protein increased to 2.5 times of that of the original glycinin, 

probably due to the introduction of palmitic acyl group (110). The palmitoyl proteins remained soluble, 

which was believed that the aggregation of the proteins was perhaps hindered by the hydrophobic tails. 

Lecithin-soy protein complex had better emulsification capacity because lecithin is a potent emulsifier and 

interacts with the soy protein both hydrophobically and hydrophilically modifying the surface charge of 

soy protein, and making it more negatively charged and thus more dispersible (113). 

Phosphatidylcholine-SPI had higher emulsifying activity than SPI without phospholipid and the 

emulsion made from denatured SPI-phospholipid complex was more stable than that formed by native 

SPI-phospholipid complex (112). The emulsification properties of lecithin-soy protein complex can be 

dramatically improved by ethanol treatment (113). Lecithin associated with soy protein during the 

aggregation process caused by ethanol denaturation. The emulsification activity of the ethanol-treated 

lecithin-soy protein complex was improved compared with the original lecithin-soy protein complex. Such 

improvement was thought to be the result of increased hydrophobic areas. Heat caused the aggregation of 

soy protein but the aggregation only increased the emulsification activity of glycinin not the β-conglycinin 

protein. The emulsification activity of the ethanol-treated lecithin-soy protein complex was not affected by 
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NaCl concentration; however, the emulsification activity of the heat-treated lecithin-soy protein complex 

declined with increasing NaCl concentration (113). 

Foaming is also an important property of proteins in aerated foods such as cakes, whipped 

toppings, frozen desserts, etc. Foaming is the ability of protein to form gas droplets entrapped inside thin 

liquid films consisting of soy protein solution. Foam stability correlated well with the amount of surface 

hydrophobic region (114). After alkali-treatment and papain-modification, the foaming capacity of soy 

protein increased to rival that of egg white (114). When treated with mild acid (0.05 N HCl at 95°C for 30 

min), soy protein was deamidated without major peptide cleavage (53) and the foaming properties, along 

with solubility and emulsification properties, were improved. The improvement corresponded to the 

increasing surface hydrophobicity. Enzymatically deamidated soy protein showed improved foaming 

properties (115). Similar observations that foaming capacity increased with the increasing hydrophobicity 

were made by others (116). Heat or enzyme hydrolysis increased foaming stability, because unfolded 

subunits had more hydrophobic area enabling soy protein to have stronger interactions at the foam surface 

(117-118), however, thermal treatment decreased the foaming capacity due to the loss of protein solubility 

(52). As well as mild heat, addition of calcium chloride increased foam stability (119). Succinylation 

improved the foam stability and capacity of soy protein by 50 and 20%, respectively, but acetylation had 

little impact (109). 

Soy protein forms gels when heated above certain temperature or when coagulating agents, like 

calcium salts, are added. A protein gel is a three-dimensional matrix formed by protein molecules in which 

the water is entrapped. Tofu is probably the best known soy protein gel. Calcium increases the sizes of the 
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aggregates and the pores inside the calcium-induced soy protein gel, and both protein and calcium 

concentration improved the elastic modulus of the gel (120). 

Producing a heat-set soy protein gel is a denaturation process, which can be affected by many 

factors such as protein concentration, pH, heating temperature and duration, salt concentration, etc. Heat 

denaturation is a prerequisite of soy protein gelation because it disrupts the native structures of the protein, 

exposes the functional groups that re-associate to form the three-dimensional structure (121). The 

re-association involves hydrogen bonds and disulfide bonds (122). Other results have shown that 

noncovalent protein-protein interactions rather than covalent disulfide bonds are formed during soy protein 

gelation (67). This reconciles with the findings by Babajimopoulos et al. that hydrogen bonds and van der 

Waals interactions are the major forces in the gelation of soy protein, whereas the hydrophobic and 

electrostatic forces are marginal (123). Another study has shown that the interaction may be between 

β-sheets (121). 

Gel hardness increased with increasing protein concentration (121, 124-125). NaCl stabilizes the 

quaternary structure of glycinin and the denaturation temperature increases with the increasing NaCl 

concentration (68-69), but the effect was pH-dependent. The salt concentration effect was less pronounced 

in the pH range of 5-8 (68). High temperature favored the formation of more ordered strand structure by 

dissociation of the quaternary structure and re-association into a new ordered structure of gel. 

β-Conclycinin formed a denser gel than glycinin at lower temperature due to its lower denaturation 

temperature (69). β-Conclycinin was more responsible for gel elasticity, whereas glycinin was responsible 

for hardness and fracturability of gels (126). 
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pH influences the denaturation temperature of soy protein and thus affects the onset temperature 

of gelation. For example, the denaturation temperature is the highest at the isoelectric point (68), while at 

the extreme pH values like pH 2 or 10, soy protein is partially denatured (69). Gels formed at acidic pH 

(<6) had higher stiffness than those formed at higher pH (>6) (68). Gels formed at pH 3.8 had coarse, 

granular, and white appearance, with high storage modulus values; whereas the gels formed at pH 7.6 

showed finer, smoother, and opaque appearance with lower storage modulus values (127). The difference 

was due to cleavage of disulfide bonds in glycinin when heated at higher pH. 

Denaturation extent and preparation method significantly affected the gelation properties of soy 

protein isolate (SPI). Highly denatured SPI formed a gel composed of the swelling particles (69). 

Completely denatured SPI has low gelation capacity, although some have high solubility (49). 

Other treatments can also alter the gelation properties of soy protein. For example, autoclaving 

SPI with reducing sugar dramatically increased the rheological properties of soy protein gels. The change 

was attributed to reduced pH from neutral to 5.5 and additional covalent bonds produced during Maillard 

reactions between soy protein and reducing sugars (128). Heating at 90°C before or after pressurization at 

300–700 MPa caused soy protein to lose gelation properties (129). Oxidation of SPI increased gel 

elasticity by modifying amino acid side chains (130) and the presence of oil droplets increased the storage 

and loss moduli of the soy protein gel (131). 

Some enzymes can cause soy protein gelation, such as the modification of covalent and 

noncovalent interactions of the soy protein polypeptides by pepsin, trypsin, papain, bromelin, ficin (132, 

133, 134) or polymerization of soy protein subunits by transglutaminase (135). 
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Applications for Soy Proteins 

Soybeans are a vital crop in many cultures, probably the most important protein source for the sustenance 

of human society, either in the converted forms of animal proteins (muscle meat and dairy products) from 

livestock feed by domestic animals, or in the form of numerous traditional soy products (including soy 

milk, tofu, etc) that can be consumed directly by humans, or as protein ingredients used in endless 

processed foodstuffs that some people may never realize. The usage of soy protein ingredients in food is 

steadily increasing due to its versatility, health benefits, and acceptance by mainstream customers.  

Soy protein concentrate (SPC) and SPI are two important commercial soybean protein products. 

SPC is an edible protein product with a protein content of at least 65% on dry weight basis (136), whereas 

SPI is a product with at least 90% protein on dry weight basis (137). Livestock feed is the largest usage of 

soy protein. Another less-mentioned major application is in pet foods where soy protein is a substitute for 

meat due to its high nutritional value and low cost. 

Depending on how much oil is removed from the beans, soy protein products can be classified as 

full-fat, partially defatted, and defatted products. Based on the protein content, these products can be 

categorized into soy flours (about 50% protein or less), SPC, and SPI. Soy flour, the least processed soy 

protein product, can be full-fat or defatted, and enzyme-active or heat-treated. Both full-fat and defatted 

enzyme-active soy flour are used in baking industry, primarily for the activity of lipoxygenase and 

β-amylase, which can give the baked products desired mixing properties, color and texture (138). Soy 

β-amylase is an ethanol-soluble enzyme that can tolerate extensive ethanol treatment at room temperature 
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(139) and can be used to hydrolyze starch from various sources (140). Heat-treated soy flours are mainly 

used in baked products giving good water retention and fat absorption capacities. 

Both SPC and SPI are made from defatted white flakes. SPC preparation from white flakes 

involves washing away the soluble sugars while insolubilizing the protein. There are three commercial 

processes: aqueous alcohol washing (20-80% alcohol), acid washing (at the isoelectric pH 4.5), and hot 

water leaching (141). In order to prepare SPI, both insoluble fiber and soluble sugars have to be removed. 

Many techniques were developed but the conventional procedure starts with solublizing the protein at 

elevated temperature and pH (such as 60ºC and pH 9-11), followed by filtration or centrifuging to remove 

the fiber, then precipitating the protein at the isoelectric point, decanting or centrifuging to recover the 

purified precipitate, and lastly neutralizing and spray-drying (141). Their functionalities can be easily 

modified to meet different requirements in food processing. 

SPC is widely used in breakfast cereals, nutritional bars for its protein nutrition and reasonable 

price (141-143); in meat products as inexpensive functional fillers; in bakery products for nutritional 

benefits and functionality. SPI is extensively used in processed meat products including emulsified, 

ground, and injected products, mainly for its adhesion, water-holding, fat-emulsifying and stabilizing 

capacities, and gelling properties (141, 143-144). It is also used in bakery products to fortify protein, to 

lower the carbohydrate level, and to improve the texture. SPI is also widely used in liquid, paste, or frozen 

dessert products as a protein fortifier, emulsifier, thickener, stabilizer, or texture/mouth-feel enhancer. 
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Soy flour, SPC, and SPI can be extruded with or without other ingredients to make texturized 

protein products, which have another broad range of applications in many foodstuffs, such as breakfast 

cereals, energy bars, etc. 

Although soy protein products are traditionally used in foods more for their economic and 

functionality reasons, their nutritional benefits are being increasingly recognized by food processors and 

the general public, e.g. as fat and carbohydrate dilution agents. The approval of soy protein’s 

“heart-healthy” claim by FDA in 1999 was one of the cornerstones in food applications for soy protein 

(145). Soy protein will find more uses in food products due to the increasing public awareness and the 

availability of new soy-protein-based ingredients. 

The amount of soy protein used in non-feed, non-food, industrial or biobased products is small 

(146), nevertheless, its industrial application potential cannot be underestimated (147). In fact, early soy 

protein production was driven by its suitability in industrial applications, such as in paper coatings, 

adhesives, water-based paint, etc. Paper coating is still one of the major industrial uses for soy protein 

today. With the anticipated depletion of fossil resources and environmental pollution associated with the 

petrochemical industry, interest in industrial applications of soy protein has rekindled (148). Compared 

with its synthetic counterparts, soy protein is a renewable material and its products are biodegradable with 

less negative impacts on the environment. One of the promising uses for soy protein is in adhesives for 

wood composite materials. Soy protein adhesives can reduce the emissions of volatile organic compounds 

commonly found in traditional wood composite products and in the work environment where those 

products are manufactured. Soy protein can be co-spun with polyvinyl alcohol to produce high quality 
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fibers. Apparel made of fabrics weaved from this kind of fibers are available on the market today 

(149-150). Plastics made from soy protein, starch, natural fiber and other biodegradable materials have 

also been developed (148). The prevalence of these novel industrial applications depends on the cost of 

massive production and the properties of the new materials compared with the existing counterparts. 

 

Soy Protein Products Preparation 

Two most commonly available and widely used concentrated forms of soy protein are SPC (>65% protein) 

and SPI (>90% protein). These ingredients are typically made from white flakes (flash-desolventized, 

solvent-extracted soybean meal, with protein content about 50%) by removing non-protein components, 

such as soluble saccharides for SPC, or both soluble sugars and insoluble fiber for SPI (151-152).  

Soy protein extraction started in the 1930’s. One of the earliest extraction methods was patented 

by Cone et al. (153) to produce soy proteins for paper coating. In the early days, pH manipulation was the 

most frequently used method. The protein was usually solublized in alkali (pH 8.0 and above) at ambient 

or elevated temperatures (153, 154), precipitated at around the isoelectric point of pH 4.5 (50, 154, 155), 

the insoluble fraction was separated by adding lime (153), centrifuging or filtering (54, 154-156). 

Soy protein can be solublized at acidic conditions. For example, when solublized at pH 1.5-3.5, 

the extracted protein was found to be more soluble than that made by isoelectric precipitation (54). Soy 

protein can be extracted with other chemicals in addition to pH manipulation, such as with salt (ionic 

strength) (157) and calcium chloride (158), which significantly improved the purity of SPI (158). 
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Other methods used in soy protein preparation include density fractionation (159) and 

ultrafiltration (160-162). Similar to conventional protein extraction (158), adding calcium hydroxide 

instead of sodium hydroxide to solublize soy proteins prior to ultrafiltration increased protein purity of SPI 

(163). This may indicate that the binding of calcium ion prevented soy protein from binding to other 

impurities. Compared with conventional isoelectric precipitation processes, the ultrafiltration process gave 

higher protein yield, because the protein normally lost in the whey was recovered (163). The efficiency of 

ultrafiltration was improved after treating the soy flour with commercial pectinases (164-165). 

SPC and SPI are mixtures of the two major storage proteins, glycinin and β-conglycinin, among 

other non-protein components. One of the major interests in soy protein processing during the past decade 

is the fractionation of these two soy proteins. The early efforts were done at bench-scale with main 

objectives of collecting enough purified samples for the basic research to understand the structural and 

physicochemical properties of the individual proteins. The fractionation was based on the slightly different 

pH solubility profiles in the presence of buffer and reducing agent (166-167). Larger scale fractionation 

has been tried in recent years (59, 168-171). All of these methods involved the manipulation of pH which 

produced additional salt. A desalting step is usually needed to remove this salt. 

A recent novel technique avoided this problem. Instead of using mineral acids, such as 

hydrochloric acid, a volatile acid, CO2 was used to lower the pH. The pH of the solution was precisely 

controlled by manipulating the CO2 pressure (172). This approach resulted in higher fraction purity and 

yield than the conventional fractionation method (172). This may be because the accuracy in pH control 

avoided localized excessive acid, which damages the protein. Another characteristic of this pressurized 
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CO2 fractionation method was that the precipitated protein particles had nearly perfect spherical shapes, 

unlike the irregular shapes in conventional mineral acid precipitation (173). Under optimum conditions, 

the spherical particles could grow to as large as 500 μm. It was also possible to co-aggregate with a second 

protein (173). This method could be used to make coatings or carrier agents for the pharmaceutical 

industry (174). 

 

Hydrothermal Cooking (HTC) 

Due to the heat-denaturation of soy proteins during the EE process, functional properties of EE meal are 

altered. Most properties are lower than those of less denatured soy proteins, such as white flakes. Protein 

denaturation also reduces SPI yield. Improving the functional properties and/or increasing extractability of 

protein can lead to more applications for EE meal and add more values and application potentials to EE 

technology. So far very little research in this area has been reported. 

One promising technology is hydrothermal cooking (HTC). HTC is a term used to describe “any 

heterogeneous reaction in the presence of aqueous solvents or mineralizers under high pressure and 

temperature conditions to dissolve and re-crystallize (recover) materials that are relatively insoluble under 

ordinary conditions” (175). The HTC technology in the food industry is generally called jet-cooking, 

which involves injecting steam into slurries of various food materials through a small orifice to modify 

their physiochemical properties. Its applications in food industry include starch modification, oil/starch or 

oil/protein emulsion formation, dietary fiber modification, pasteurization, etc (176-178). 
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One of earliest applications of HTC in food processing involved treating the gluten fraction in 

corn wet milling. HTC at 138-193˚C was found to be effective on improving the filterability and protein 

content of the gluten fraction (179). The higher the temperature, the shorter the time needed. HTC 

treatment at 141-160˚C removed the typical beany flavor and other detrimental odors in isolated soy 

protein, making it more suitable for food applications (180). Another patent described HTC treatment of 

soy protein at 121-177˚C, pH 6.8-7.2, for less than 6 min (181). After HTC, the slurry was flashed and 

cooled under reduced pressure in a vented chamber. The inventors claimed that HTC had the benefits of 

microorganism destruction, trypsin inhibitors inactivation, and deodorization (181). After HTC treatment 

at 110-140˚C, pH 6.5-9, for 2-180 s, the Nitrogen Solubility Index (NSI), flavor and color of the denatured 

defatted soy flakes from alcohol extraction or desolventization was effectively improved (99).  

When treating soy protein materials at 107-204˚C for 3-180 s with the pH of the slurry around the 

isoelectric point (pH 3.5-5.5) instead of neutral or mild alkaline conditions, then neutralizing the treated 

slurry immediately without cooling, soluble protein was increased from 60 to 90% compared with 

conventional extraction (182). 

Studies by Johnson et al. (183-185) showed that when treated with HTC at 154˚C, the solids and 

protein yields of soy milk increased from 62 to 86% and from 73 to 90%, respectively. The trypsin 

inhibitor activity was reduced to <10% in about 40 s of heat treatment. HTC has been shown to be 

effective on improving the major functionalities of alcohol-washed SPC, in which protein was denatured 

by ethanol (186). The nearly flat solubility profile curve of denatured protein was restored to a typical U 

shape of non-denatured soy protein. HTC also improved the emulsification and foaming properties (186). 
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Although it is believed that the high shear and temperature are the major forces during HTC, the exact 

mechanism of protein refunctionalization is not fully understood. Wang et al. (187) showed that HTC 

disrupted the large particles into smaller, more dispersible aggregates. The spray-dried HTC-treated soy 

protein samples had slightly darker color than the untreated control, probably because of the Maillard 

reactions during HTC (186). 

A recent study demonstrated that the functional properties of the wheat gluten were altered when 

treated by HTC in presence of corn syrup (188). Polymers of large molecular size were formed during this 

process. 

Other similar techniques include the employment of shear force, heat and mild alkali to modify 

the soy protein. For example, treating soy flakes through a shearing orifice at around the isoelectric point 

(pH 3.5-5.5) resulted in a soy protein concentrate with higher viscosity than conventional method (189). 

Soy protein products with high NSI were produced after subjecting the less-soluble soy protein materials 

(such as alcohol-washed soy flour) to successive shear force and cavitation cycling in a homogenizer at 

temperature of 50-150˚C, pH 6.5-9.0 (190). All these imply that HTC has the potential to modify plant 

proteins. 

 

Hypothesis and Objectives of the Dissertation 

There is little understanding on whether or how HTC can improve the functional properties of 

heat-denatured soy proteins especially those from the EE process. Based on the aforementioned findings 
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that HTC increased soy milk yield (183) and refunctionalized alcohol-denatured soy protein (186, 191), 

we hypothesized that HTC can restore the lost functionality of heat-denatured EE proteins. 

The overall objective of this project was to improve the functional properties of EE meals using 

HTC and to extract value-added soy protein products from HTC-treated EE meal. Our research was 

divided into four parts corresponding to four manuscripts in the following chapters. In Chapter 1, the 

potential of HTC to improve the functionalities of EE meal was determined under different HTC operating 

conditions. In Chapter 2, the feasibility of preparing SPC and SPI from EE meals was evaluated. In 

Chapter 3, the potential of HTC with alkali to enhance functionality and the preparation of SPI from EE 

meal was explored. In Chapter 4, a model was developed to explain the mechanism of HTC in restoring 

functionality of EE meal. 
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AN EXPLANATION OF THE DISSERTATION ORGANIZATION 

This dissertation is organized in the following order: four individual papers published on the Journal of the 

American Oil Chemists’ Society, which are in the designated format for that journal, followed by the 

general summary chapter and recommendations for future work. 

 

REFERENCES 

1. Fox, W., Method of Treating Soybeans, U.S. Patent 3,695,891 (1972). 

2. http://www.insta-pro.com/company.htm, visited in October 2006. 

3. Nelson, A.I., W.B. Wijeratne, S.W. Yeh, T.M. Wei, and L.S. Wei, Dry Extrusion as an Aid to 

Mechanical Expelling of Oil from Soybeans, J. Am. Oil Chem. Soc. 64:1341-1347 (1987). 

4. Zhang, Y.E., C.M. Parsons, K.E. Weingartner, and W.B. Wijeratne, Effect of Extrusion and Expelling 

on Nutritional Quality of Conventional and Kunitz Trypsin Inhibitor-Free Soybeans, Poultry Sci. 

72:2299-2308 (1993). 

5. Woodworth, J.C., M.D. Tokach, R.D. Goodband, J.L. Nelssen, P.R. O’Quinn, D.A. Knabe, and N.W. 

Said, Apparent Ideal Digestibility of Amino Acids and the Digestible and Metabolizable Energy 

Content of Dry Extruded-Expelled Soybean Meal and Its Effects on Growth Performance of Pigs, J. 

An. Sci. 79:1280-12870 (2001). 

6. Webster, M.J., R.D. Goodband, M.D. Tokach, J.L. Nelssen, S.S. Dritz, J.C. Woodworth, M. De La 

Llata, and N.W. Said, Evaluating Processing Temperature and Feeding Value of Extruded-Expelled 

Soybean Meal on Nursery and Finishing Pig Growth Performance, J. An. Sci. 81:2032-2040 (2003). 

http://www.insta-pro.com/company.htm


www.manaraa.com

  34

7. Wang, T., and L.A. Johnson, Survey of Soybean Oil and Meal Qualities Produced by Different Process, 

J. Am. Oil Chem. Soc. 78:311-318 (2001). 

8. Wang, T., and L.A. Johnson, Natural Refining of Extruded-Expelled Soybean Oils Having Various 

Fatty Acid Compositions, J. Am. Oil Chem. Soc. 78:461-466 (2001). 

9. Catherine, W., The Mystery of the Longer-Life Frying Oil, INFORM, 16:69-72 (2005). 

10. Riaz, M. N., Extrusion-Expelling of Soybeans for Texturized Soy Protein. In Proceedings of the World 

Conference on Oilseed Processing and Utilization, edited by R. Wilson, AOCS Press, Champaign, IL, 

2001, pp. 171-175. 

11. Crowe, T.W., L.A. Johnson, and T. Wang, Characterization of Extruded-Expelled Soybean Flours, J. 

Am. Oil Chem. Soc. 78:775-779 (2001). 

12. Heywood, A.A., D.J. Myers, T.B. Bailey, and L.A. Johnson, Functional Properties of Low-Fat Soy 

Flour Produced by an Extrusion-Expelling System, J. Am. Oil Chem. Soc. 79:1249-1253 (2002). 

13. Crowe, T.W., and L.A. Johnson, Twin-Screw Extrusion Texturization of Extruded-Expelled Soybean 

Flour, J. Am. Oil Chem. Soc. 78:781-786 (2001). 

14. Pour-El, A, Protein Functionality: Classification, Definition, and Methodology, in Protein 

Functionality in Foods (ACS Symposium Serious; 147), edited by A. Pour-El, American Chemical 

Society, Washington D.C., 1981, pp. 1-19. 

15. Spencer, M.T., Market Overview: Sales Top $51 Billion, Natural Foods Merchandiser, 27(6):1-1 

(2006). 

16. Perkins, E.G., Composition of Soybeans and Soybean Products, in Practical Handbook of Soybean 



www.manaraa.com

  35

Processing and Utilization, edited by D.R. Erickson, AOCS Press and the American Soybean 

Association, Champaign, IL, 1995, pp. 9-28. 

17. Murphy, P.A., and A.P. Resurreccion, Varietal and Environmental Differences in Soybean Glycinin 

and β-Conglycinin Content, J. Agric. Food Chem. 32:911-915 (1984). 

18. Nielsen, N.C., the Structure and Complexity of the 11S Polypeptides in Soybeans, J. Am. Oil Chem. 

Soc. 62:1680-1686 (1985). 

19. Kitamura, K., and K. Shibasaki, Isolation and Some Physico-Chemical Properties of the Acidic 

Subunits of Soybean 11S Globulin, Agric. Biol. Chem. 39:945-951 (1975). 

20. Kitamura, K., T. Takagi, and K. Shibasaki, Subunit Structure of Soybean 11S Globulin, Agric. Biol. 

Chem. 40:1837-1844 (1976). 

21. Staswick, P.E., M.A. Hermodson, and N.C. Nielsen, Identification of the Cystines which Link the 

Acidic and Basic Components of the Glycinin Subunites, J. Biol. Chem. 259:13431-13435 (1984). 

22. Tumer, N.E., V.H. Thanh, and N.C. Nielsen, Purification and Characterization of mRNA from 

Soybean Seeds, J. Biol. Chem. 256:8756-8760 (1981). 

23. Champa, S., V. Deluca, D. Bailey, and D. Verma, Post-translational Processing of 7S and 11S 

Components of Soybean Storage Proteins, Plant Mol. Biol. 1:19-34 (1981). 

24. Lakemond, C.M., H.H. Jongh, M. Hessing, H. Gruppen, and A.G. Voragen, Soy Glycinin: Influence of 

pH and Ionic Strength on Solubility and Molecular Structure at Ambient Temperatures, J. Agric. Food 

Chem. 48:1985-1990 (2000). 

25. Maruyama, N., T. Katsube, Y. Wada, M. Oh, A. Barba De Rosa, E. Okuda, S. Nakagawa, and S. 



www.manaraa.com

  36

Utsumi, the Roles of the N-Linked Glycans and Extension Regions of Soybean β-Conglycinin in 

Folding, Assembly and Structural Features, Eur. J. Biochem. 258:854-862 (1998). 

26. Utsumi, S., H. Maruyama, R. Satoh, and M. Adachi, Structure-Function Relationships of Soybean 

Proteins Revealed by Using Recombinant Systems, Enzyme Microb. Technol. 30:284-288 (2002). 

27. Maruyama, N., M.R.M. Salleh, K. Takahashi, K. Yagasaki, H. Goto, N. Hontani, S. Nakagawa, and S. 

Utsumi, Structure-Physicochemical Function Relationships of Soybean β-Conglycinin Heterotrimers, 

J. Agric. Food Chem. 50:4323-4326 (2002). 

28. Maruyama, N., M.R.M. Salleh, K. Takahashi, K. Yagasaki, H. Goto, N. Hontani, S. Nakagawa, and S. 

Utsumi, the Effect of the N-Linked Glycans on Structural Features and Physicochemical Functions of 

Soybean β-Conglycinin Homotrimers, J. Am. Oil Chem. Soc. 79:139-144 (2002). 

29. Thanh, V.H., and K. Shibasaki, Major Proteins of Soybean Seeds. Subunit Structure of β-Conglycinin, 

J. Agric. Food Chem. 26:692-695 (1978). 

30. Koshiyama, I., Factors Influencing Conformation Changes in a 7S Protein of Soybean Globulins by 

Ultracentrifugal Investigations, Agric. Biol. Chem. 32:879-887 (1968). 

31. Hou, H.J., and K.C. Chang, Structural Characteristics of Purified β-Conglycinin from Soybeans Stored 

under Four Conditions, J. Agric. Food Chem. 52:7931-7937 (2004). 

32. Hou, H.J., and K.C. Chang, Structural Characteristics of Purified Glycinin from Soybeans Stored 

under Various Conditions, Ibid.. 52:3792-3800 (2004). 

33. Damodaran, S., Amino Acids, Peptides, and Proteins, in Food Chemistry, edited by O.R. Fennema, 3rd 

edn, Marcel Dekker, Inc., New York, 1996, pp.353-364. 



www.manaraa.com

  37

34. Wolf, W.J., and T. Tamura, Heat Denaturation of Soybean 11S Protein, Cereal Chem. 46:331-344 

(1969). 

35. Armstrong, D.L., D.W. Stanley, and T.J. Maurice, Functional Properties of Microwave-Heated 

Soybean Proteins, in Functionality and Protein Structure (ACS Symposium Serious; 92), edited by A. 

Pour-El, American Chemical Society, Washington D.C., 1979, pp. 147-172. 

36. Yamagishi, T., F. Yamauchi, and K. Shibaski, Isolation and Partial Characterization of Heat-Denatured 

Products of Soybean 11S Globulin and their Analysis by Electrophoresis, J. Agric. Food Chem. 

44:1575-1582 (1980). 

37. German, B., and J.E. Kinsella, Thermal Dissociation and Association Behavior of Soy Proteins, J. 

Agric. Food Chem. 30:807-811 (1982). 

38. Damodaran, S., and J.E. Kinsella, Effect of Conglycinin on the Thermal Aggregation of Glycinin, J. 

Agric. Food Chem. 30:812-817 (1982). 

39. Utsumi, S., S. Damodaran, and J.E. Kinsella, Heat-Induced Interactions between Soybean Proteins: 

Preferential Association of 11S Basic Subunits and β Subunits of 7S, J. Agric. Food Chem. 

32:1406-1412 (1984). 

40. Lakemond, C.M., H.H. Jongh, M. Hessing, H. Gruppen, and A.G. Voragen, Heat Denaturation of Soy 

Glycinin: Influence of pH and Ionic Strength on Molecular Structure, J. Agric. Food Chem. 

48:1991-1995 (2000). 

41. Koshiyama, I., M. Hamano, and D. Fukushima, A Heat Denaturation Study of the 11 S Globulin in 

Soybean Seeds, Food Chem. 6:309-322 (1981). 



www.manaraa.com

  38

42. Zarins, Z.M., and W.E. Marshall, Thermal Denaturation of Soy Glycinin in the Presence of 

2-Mercaptoethanol Studied by Differential Scanning Calorimetry, Cereal Chem. 67:35-38 (1990). 

43. Kim, S.H., and J.E. Kinsella, Effects of Reduction with Dithiothreitol on Some Molecular Properties of 

Soy Glycinin, J. Agric. Food Chem. 34:623-627 (1986). 

44. Rothenbuhler, and E., J.E. Kinsella, Disulfide Reduction and Molecular Dissociation Improves the 

Proteolysis of Soy Glycinin by Pancreatin in Vitro, J. Food Sci. 51:1479-1482, 1510 (1986). 

45. Lin, S., and A.L. Lakin, Thermal Denaturation of Soy Proteins as Related to their Dye-Binding 

Characteristics and Functionality, J. Am. Oil Chem. Soc. 67: 872-878 (1991). 

46. Petruccelli, S., and M. Anon, Relationship between the Method of Obtention and the Structural and 

Functional Properties of Soy Protein Isolates. 1. Structural and Hydration Properties, J. Agric .Food 

Chem. 42:2161-2169 (1995). 

47. Sorgentini, D., J. Wagner, and M. Anon, Effects of Thermal Treatment of Soy Protein Isolate on the 

Characteristics and Structure-Function Relationship of Soluble and Insoluble Fractions, J. Agric .Food 

Chem. 43:2471-2479 (1996). 

48. Wagner, J., and M. Anon, Influence of Denaturation, Hydrophobicity and Sulfhydryl Content on 

Solubility and Water Absorbing Capacity of Soy Protein Isolates, J. Food Sci. 55:765–770 (1990). 

49. Arrese, E., D. Sorgentini, J. Wagner, and M. Anon, Electrophoretic, Solubility and Functional 

Properties of Commercial Soy Protein Isolates, J. Agric. Food Chem. 39:1029-1032 (1991). 

50. Sair, L., Proteinaceous Soy Composition and Method of Preparing, U.S. Patent 2,881,076 (1958). 

51. Nir, I., Y. Feldman, A. Aserin, and N. Garti, Surface Properties and Emulsification Behavior of 



www.manaraa.com

  39

Denatured Soy Proteins, J. Food Sci. 59:606-610 (1994). 

52. Petruccelli, S., and M. Anon, Relationship between the Method of Obtention and the Structural and 

Functional Properties of Soy Protein Isolates. 2. Surface Properties, J. Agric .Food Chem. 

42:2170-2176 (1995). 

53. Matsudomi, N., T. Sasaki, A. Kato, and K. Kobayashi, Conformational Changes and Functional 

Properties of Acid-Modified Soy Protein, Agric. Bio. Chem. 49:1251-1256 (1985). 

54. Kruseman, J., Soluble Soy Protein, U.S. Patent 4,064,119 (1977). 

55. Nash, A.M., W.F. Kwolek, and W.J. Wolf, Denaturation of Soybean Proteins by Isoelectric 

Precipitation, Cereal Chem. 48:360-368 (1971). 

56. Ishino, K., and S. Okamoto, Molecular Interaction in Alkali Denatured Soybean Proteins, Cereal 

Chem. 53:9-21 (1975). 

57. Robbins, K. R., and J. E. Ballew, Effect of Alkaline Treatment of Soy Protein on Sulfur Amino Acid 

Bioavailability, J. Food Sci. 47:2070-2071 (1982). 

58. Robbins, K. R., and J. E. Ballew, Effect of Alkaline Treatment of Soy Protein on Sulfur Amino Acid 

Bioavailability, J. Food Sci. 47:2070-2071 (1982). 

59. Wu, S., P.A. Murphy, P.A. Johnson, M.A. Reuber, and A.R. Fratzke, Simplified Process for Soybean 

Glycinin and β-Conglycinin Fractionation, J. Agric. Food Chem. 48:2702-2708 (2000). 

60. Wu, W., N.S. Hettiarachchy, U. Kalapathy, and W.P. Williams, Functional Properties and Nutritional 

Quality of Alkali- and Heat-Treated Soy Protein Isolate, J. Food Quality 22:119–133 (1999). 

61. Friedman, M., Lysinoalanine Formation in Soybean Proteins: Kinetics and Mechanisms, ACS 



www.manaraa.com

  40

Symposium Series 20:231-273 (1984). 

62. Friedman, M., C. Levin, and A. Noma, Factors Governing Lysinoalanine Formation in Soy Proteins, J. 

Food Sci. 49:1282-1288 (1984). 

63. Berk, Z., Technology of Production of Edible Flours and Protein Products from Soybeans, Food and 

Agriculture Organization of the United Nations (FAO), Rome, 1992 , pp. 73-96. 

64. Mori, T., T. Nakamura, and S. Utsumi, Gelation Mechanism of Soybean 11S Globulin: Formation of 

Soluble Aggregates as Transient Intermediates, J. Food Sci. 47:26-30 (1982). 

65. Nakamura, T., S. Utsumi, and T. Mori, Network Structure Formation in Thermally Induced Gelation of 

Glycinin, J. Agric. Food Chem. 32:349-352 (1984). 

66. Mori, T., T. Nakamura, and S. Utsumi, Behavior of Intermolecular Bond Formation in the Late Stage 

of Heat-Induced Gelation of Glycinin, J. Agric. Food Chem. 34:33-36 (1986). 

67. Renkema, J.M.S., and T. Vliet, Heat-Induced Gel Formation by Soy Proteins at Neutral pH, J. Agric. 

Food Chem. 50:1569-1573 (2002). 

68. Renkema, J.M.S., H. Gruppen, and T. Vliet, Influence of pH and Ionic Strength on Heat-Induced 

Formation and Rheological Properties of Soy Protein Gels in Relation to Denaturation and their 

Protein Compositions, J. Agric. Food Chem. 50:6064-6071 (2002). 

69. Hermansson, A., Soy Protein Gelation, J. Am. Oil Chem. Soc. 63:658-666 (1986). 

70. Nakamura, T., S. Utsumi, and T. Mori, Interactions during Heat-Induced Gelation in a Mixed System 

of Soybean 7S and 11S Globulins, Agric. Biol. Chem. 50:2429-2435 (1986). 

javascript:VolumeSearch('Agricultural%20and%20Biological%20Chemistry','50')


www.manaraa.com

  41

71. Ryan, C. A., Protease Inhibitors in Plants: Genes for Improving Defenses against Insects and 

Pathogens., Annu. Rev. Phytopath. 28:425-449 (1990). 

72. Song, H.K., and S.W. Suh, Kunitz-Type Soybean Trypsin Inhibitor Revisited: Refined Structure of its 

Complex with Porcine Trypsin Reveals an Insight into the Interaction Between a Homologous Inhibitor 

from Erythrina Caffra and Tissue-Type Plasminogen Activator, J. Mol. Biol. 275:347-363(1998). 

73. Voss, R.H, U. Ermler, L.O. Essen, G. Wenzl, Y.M. Kim, and P. Flecker, Crystal Structure of the 

Bifunctional Soybean Bowman-Birk Inhibitor at 0.28-nm Resolution Structural Peculiarities in a 

Folded Protein Conformation, Eur. J. Biochern. 242:122-131 (1996).  

74. Koepke, J., U. Ermler, E. Warkentin, G. Wenzl, and P. Flecker, Crystal Structure of Cancer 

Chemopreventive Bowman-Birk Inhibitor in Ternary Complex with Bovine Trypsin at 2.3 Å 

Resolution. Structural Basis of Janus-faced Serine Protease Inhibitor Specificity, J. Mol. Biol. 

298:477-491(2000). 

75. Kennedy, A.R., Chemopreventive Agents: Protease Inhibitors, Pharmacol. Ther. 78:167-209 (1998). 

76. Maria, F.T., A.B.Veronica, S.A. Longhi, L.A. Retegui, and C.Wolfenstein-Todel, Peltophorum Dubium 

and Soybean Kunitz-Type Trypsin Inhibitors Induce Human Jurkat Cell Apoptosis, Int. 

Immunopharmacol. 7:625-636(2007). 

77. Kobayashi, H., R. Yoshida, Y. Kanada, Y. Fukuda, T. Yagyu, K. Inagaki, T. Kondo, N. Kurita, Y. 

Yamada, T. Sado, T. Kitanaka, M. Suzuki, N. Kanayama, and T. Terao, A Soybean Kunitz Trypsin 

Inhibitor Reduces Tumor Necrosis Factor-α Production in Ultraviolet-Exposed Primary Human 

Keratinocytes, Exp. Dermatol. 14:765-774 (2005). 



www.manaraa.com

  42

78. Kobayashi, H., M. Suzuki, N. Kanayama, and T. Terao, A Soybean Kunitz Trypsin Inhibitor Suppresses 

Ovarian Cancer Cell Invasion by Blocking Urokinase Upregulation, Clin. Exp. Metastasis 21:159-166 

(2004). 

79. David McCormick, D.L., W.D. Johnson, M.C. Bosland, R.A. Lubet, and V.E. Steele, Chemoprevention 

of Rat Prostate Carcinogenesis by Soy Isoflavones and by Bowman-Birk Inhibitor, Nutr. Cancer 

57:184-193 (2007). 

80. Chen, Y.W., S.C. Huang, S.Y. Lin-Shiau, and J.K. Lin, Bowman-Birk Inhibitor Abates Proteasome 

Function and Suppresses the Proliferation of MCF7 Breast Cancer Cells through Accumulation of MAP 

Kinase Phosphatase-1, Carcinogenesis 26:1296-1306 (2005). 

81. Suzuki, K., T. Yano, Y. Sadzuka, T. Sugiyama, T. Seki, and R. Asano, Restoration of Connexin 43 by 

Bowman-Birk Protease Inhibitor in M5076 Bearing Mice, Oncol. Rep. 13:1247-1250 (2005). 

82. Witschi, H., A.R. Kenneday, Modulation of Lung Tumor Development in Mice with the 

Soybean-derived Bowman-Birk Protease Inhibitor, Carcinogenesis 10:2275-2277 (1989). 

83. Bando, N., H. Tsuji, R. Yamanishi, N. Nio, and T. Ogawa, Identification of the Glycosylation Site of a 

Major Soybean Allergen, Gly m Bd 30K, Biosci. Biotechnol. Biochem. 60:347-348 (1996). 

84. Kalinski, A., D.L. Melroy, R.S. Dwivedi, and E.M. Herman, A Soybean Vacuolar Protein (P34) Related 

to Thiol Proteases is Synthesized as a Glycoprotein Precursor during Seed Maturation, J. Biol. Chem. 

267:12068-12076 (1992). 



www.manaraa.com

  43

85. Samoto, M., C. Miyazaki, T. Akasaka, H. Mori, and Y. Kawamura, Specific Binding of Allergenic 

Soybean Protein Gly m Bd 30K with α ′- and alpha α-Subunits of Conglycinin in Soy Milk, Biosci. 

Biotechnol. Biochem. 60:1006-1010 (1996). 

86. Hiemori, M., N. Bando, T. Ogawa, H. Shimada, H. Tsuji, R. Yamanishi, and J. Terao,  

Occurrence of IgE Antibody-recognizing N-Linked Glycan Moiety of a Soybean Allergen, Gly m Bd 

28K, Int. Arch. Allergy Immunol. 122:238-245 (2000). 

87. Gonzalez, R., J. Varela, J. Carreira, and F. Polo, Soybean Hydrophobic Protein and Soybean Hull 

Allergy, Lancet. 346:48-49 (1995). 

88. Fu, C.J., J.M. Jez, M.S. Kerley, G.L. Allee, and H.B. Krishnan, Identification, Characterization, 

Epitope Mapping, and Three-Dimensional Modeling of the α-Subunit of β-Conglycinin of Soybean, a 

Potential Allergen for Young Pigs, J. Agric. Food Chem. 55:4014-4020 (2007). 

89. Ogawa, T., N. Bando, H. Tsuji, K. Nishikawa, and K. Kitamura, α-Subunit of β-Conglycinin, an 

Allergenic Protein Recognised by IgE Antibodies of Soybean-Sensitive Patients with Atopic 

Dermatitis, Biosci. Biotechnol.Biochem. 59:831-833 (1995).  

90. Petruccelli, S., F.G. Chirdo, and M.C. Anon, Immunochemical Reactivity of Soybean β-Conglycinin 

Subunits, Food Agric. Immunol. 16:17-28 (2005). 

91. Pedersen, H.S., and R. Djurtoft, Antigenic and Allergenic Properties of Acidic and Basic Peptide Chains 

from Glycinin, Food Agric. Immunol. 1:101-109 (1989). 

92. Roychaudhuria, R., G. Sarathb, M. Zeece, and J. Markwell, Stability of the Allergenic Soybean Kunitz 

Trypsin Inhibitor, Biochim. Biophysic. Acta. 1699:207-212(2004). 



www.manaraa.com

  44

93. Hansen, J.R., Hydration of Soybean Protein, J. Agric. Food Chem. 24:1136-1141 (1976). 

94. Hansen, J.R., Dehydration and Hydration Kinetics of Soybean Proteins, J. Agric. Food Chem. 

26:297-301 (1978). 

95. Hansen, J.R., Hydration of Soybean Protein, 2. Effect of Isolation Method and Various Other 

Parameters on Hydration, J. Agric. Food Chem. 26:301-304 (1978). 

96. Hagenmaier, R., Water Binding of Some Purified Oilseed Proteins, J. Food Sci. 37:965-966 (1972). 

97. Hettiarachchy, N., and U. Kalapathy, Soybean Protein Products, in Soybeans: Chemistry, Technology 

and Utilization, edited by K. Liu, Chapman & Hall, New York, 1997, pp. 398. 

98. Fleming, S.E., F.W. Sosulski, A. Kilara, and E.S. Humbert, Viscosity and Water Absorption 

Characteristics of Slurries of Sunflower and Soybean Flours, Concentrates and Isolates, J. Food Sci. 

39:188-191 (1974). 

99. Traynham, T.L., D. J. Myers, A.L. Carriquiry, and L A. Johnson, Evaluation of Water-Holding 

Capacity for Wheat–Soy Flour Blends, J. Am. Oil Chem. Soc. 84:151-155 (2007). 

100. Hutton, C.W., and A.M. Campbell, Functional Properties of a Soy Concentrate and a Soy Isolate in 

Simple System: Nitrogen Solubility Index and Water Absorption, J. Food Sci. 42:454-456 (1977). 

101. Bhattacharya, M., and M.A. Hanna, Effect of Lipids on the Properties of Extruded Products, J. Food 

Sci. 53:1230-1231 (1988). 

102. Rickert, D.A., L.A. Johnson, and P.A. Murphy, Functional Properties of Improved Glycinin and 

Beta-Conglycinin Fractions, J. Food Sci. 68:303-311 (2004). 

103. Ochiai, K., Y. Kamat, and K. Shibasaki, Effect of Tryptic Digestion on Emulsifying Properties of Soy 



www.manaraa.com

  45

Protein, J. Agric. Biol.Chem. 41:91-96 (1982). 

104. Stone, M. B., and A.M. Campbell, Emulsification in Systems Containing Soy Protein Isolates, Salt 

and Starch, J. Food Sci. 45:1713-1716 (1980). 

105. Nir, I., Y. Feldman, A. Aserin, and N. Garti, Surface Properties and Emulsification Behavior of 

Denatured Soy Proteins, J. Food Sci. 59:606-610 (1994). 

106. Bernard E.C., A.S. Grandison, and M.J. Lewis, Emulsifying Properties of Soy Protein Isolate 

Fractions Obtained by Isoelectric Precipitation, J. Sci. Food and Agric. 81:759-763 (2001). 

107. Liu, M., D. Lee, and S. Damodaran, Emulsifying Properties of Acidic Subunits of Soy 11S Globulin, 

J. Agric. Food Chem. 47:4970-4975 (1999). 

108. Franzen, K.L., and J.E. Kinsella, Functional Properties of Succinylated and Acetylated Soy Protein, J. 

Agric. Food Chem. 24:788-795 (1976). 

109. Kim, K.S., and J.S. Rhee, Effect of Acetylation on Emulsifying Properties of Glycinin, J. Agric. Food 

Chem. 38:669-674 (1990). 

110. Haque, Z., M. Teruyoshi, and M. Kito, Incorporation of Fatty Acid into Food Protein: Palmitoyl 

Soybean Glycinin, J. Agric. Food Chem. 30:481-486 (1982). 

111. Scuriatti, M.P, M.C. Tomas, and J. R. Wagner, Influence of Soybean Protein Isolates: 

Phosphatidylcholine Interaction on the Stability of Oil-in-Water Emulsions, J. Am. Oil Chem. Soc. 

80:1093–1100 (2003). 

112. Chen, W.S., and W.G. Soucie, Modification of Surface Charges of Soy Protein by Phospholipids, J. 

Am.Oil Chem. Soc. 62:1686–1689 (1985). 



www.manaraa.com

  46

113. Hirotsuka, M., H. Taniguchi, H. Narita, and M. Kito, Increase in Emulsification Activity of Soy 

Lecithin-Soy Protein Complex by Ethanol and Heat Treatments, J. Food Sci, 49:1105-1110 (1984). 

114. Were, L., N.S. Hettiarachchy, and U. Kalapathy, Modified Soy Proteins with Improved Foaming and 

Water Hydration Properties, J. Food Sci. 62:821-823, 850 (1997). 

115. Hamada, J.S., and W.E. Marshall, Preparation and Functional Properties of Enzymatically 

Deamidated Soy Proteins, J. Food Sci. 54:598-601 (1989). 

116. Lee, C.H., and S.K. Kim, Effects of Protein Hydrophobicity on the Surfactant Properties of Food 

Proteins, Food Hydrocoll. 1:283-289 (1987). 

117. Horiuchi, T., D. Fuknshima, H. Sugimoto, and T. Hattori, Studies on Enzyme-Modified Proteins as 

Foaming Agents: Effect of Structure on Foam Stability, Food Chem. 3:5-42 (1978). 

118. German, J.B., T.E. O'Neill, and J.E. Kinsella, Film Forming and Foaming Behavior of Food Proteins, 

J. Am. Oil Chem. Soc. 62:1358-1366 (1985). 

119. Park, S.K., J.M. Cho, and R.O. Rhee, Effect of Guar Gum, Carrageenan and Calcium Chloride on 

Foaming Properties of Soy Protein Isolate, Food Sci. Biotech. 10:257–260 (2001). 

120. Maltais, A., G.E. Remondetto, R. Gonzalez, and M. Subirade, Formation of Soy Protein Isolate 

Cold-Set Gels: Protein and Salt Effects, J. Food Sci. 70:C67–C73 (2005). 

121. Wang, C., and S. Damodaraon, Thermal Gelation of Globular Proteins: Influences of Protein 

Conformation on Gel Strength, J. Agric. Food Chem. 39:433-438 (1991). 

122. Utsumi, S., and J.E. Kinsella, Structure-Function Relationships in Food Proteins: Subunit Interactions 

in Heat-Induced Gelation of 7S, 11S, and Soy Isolate Proteins, J. Agric. Food Chem. 33:297-303 



www.manaraa.com

  47

(1985). 

123. Babajimopoulos, M., S. Damodaran, S.S. Rizvi, and J.E. Kinsella, Effects of Various Anions on the 

Rheological and Gelling Behavior of Soy Proteins: Thermodynamic Observations, J. Agric. Food 

Chem. 31:1270-1275 (1983). 

124. Shemer, M., H.L. Creinin, R.E. McDonald, and W.E. Irwin, Functional Properties of a New Soy 

Protein Isolate, Cereal Chem. 53:383-391 (1978). 

125. Ehninger, J.N., and D.E. Pratt, Some Factors Influencing Gelation and Stability of Soy Protein 

Dispersions, J. Food Sci. 39:892-896 (1974). 

126. Kang, I., and Y. Lee, Effects of β-Conglycinin and Glycinin on Thermal Gelation and Gel Properties 

of Soy Protein, Food Sci. Biotech. 14:11–15 (2005). 

127. Renkema, J.M.S., C.M.M. Lakemond, H.H.J. Jongh, H. Gruppen, and T. Vliet, the Effect of pH on 

Heat Denaturation and Gel Forming Properties of Soy Proteins, J. Biotech. 79:223–230 (2000). 

128. Cabodevila, O., S.E. Hill, H.J. Armstrong, I.D. Sousa, and J.R. Mitchell, Gelation Enhancement of 

Soy Protein Isolate Using the Maillard Reaction and High Temperatures, J. Food Sci. 59:872-875 

(1994). 

129. Molina, E., and D.A. Ledward, Effects of Combined High-Pressure and Heat Treatment on the 

Textural Properties of Soya Gels, Food Chem. 80:367–370 (2003). 

130. Liu, G., Y.L. Xiong, and D.A. Butterfield, Chemical, Physical, and Gel-Forming Properties of 

Oxidized Myofibrils and Whey- and Soy-Protein Isolates, J. Food Sci. 65:811–818 (2000). 

131. Kim, K.H., J.M.S. Renkema, and T. Vliet, Rheological Properties of Soybean Protein Isolate Gels 



www.manaraa.com

  48

Containing Emulsion Droplets, Food Hydrocoll. 15:295–302 (2001). 

132. Fang, Z., X. Yang, Y. Li, and C.F. Shoemaker, Papain-Induced Gelation of Soy Glycinin (11S),  J. 

Food Sci. 71:E232–E237 (2006). 

133. Pour-El, A., Gellable Protein, U.S. Patent 3,932,672 (1976). 

134. Pour-El, A., and T.S. Swenson, Gelation Parameters of Enzymatically Modified Soy Protein Isolates, 

Cereal Chem. 53:438-456 (1976). 

135. Tang, C.H., H. Wu, H.P. Yu, L. Li, Z. Chen, and X.Q. Yang, Coagulation and Gelation of Soy 

Protein Isolates Induced by Microbial Transglutaminase, J. Food Biochem. 30:35–55 (2006). 

136. Campbell, M.F., C.W. Kraut, W.C. Yackel, and H.S. Yang, Soy Protein Concentrate, in New Protein 

Foods, Vol. 5: Seed Storage Proteins, edited by A.M. Altschul and H.L. Wilcke, Academic Press, 

London, 1985, pp. 300-337. 

137. Kolar, C.W., S.H. Richert, C.D. Decker, F.H. Steinke, and R.J. Vander Zanden, Isolated Soy Protein, 

in New Protein Foods, Vol. 5: Seed Storage Proteins, edited by A.M. Altschul and H.L. Wilcke, 

Academic Press, London, 1985, pp. 259-300. 

138. Heiser J., and T. Trentelman, Full-Fat Soya Products: Manufacturing and Uses, in Foodstuffs, in 

Proceedings of the World Congress: Vegetable Proteins Utilization in Human Foods and Animal 

Feedstuffs, edited by T.H. Applewhite, American Oil Chemists’ Society, Champaign, IL, 1989 pp. 

52-54. 

139. Ren, H., J.F. Thompson, and J.T. Madison, Biochemical and Physiological Studies of Soybean 

β-Amylase, Phytochem. 33:541-545 (1993). 



www.manaraa.com

  49

140. Newton, J.M., F.F. Farley, and N.M. Naylor, The Use of Soybean Beta-Amylase to Follow the 

Modification of Starch, Cereal Chem.17:342-355 (1940). 

141. Lusas, E.W., and K.C. Rhee, Soybean Protein Processing and Utilization, in Practical Handbook of 

Soybean Processing and Utilization, edited by D.R. Erickson, AOCS Press and the American Soybean 

Association, Champaign, IL, 1995, pp. 117-160. 

142. Chajuss, D., Soy Protein Concentrate: Technology, Properties, and Applications, in Soybeans as 

Functional Foods and Ingredients, edited by K. Liu, AOCS Press, Champaign, IL, 2005, pp. 121-133. 

143. Endres, J.G., Uses in Food Systems, in Soy Protein Products: Characteristics, Nutritional Aspects, 

and Utilization, edited by J.G. Endres, AOCS Press, Champaign, IL, 2001, pp. 31-46. 

144. Egbert, W.R., Isolated Soy Protein: Technology, Properties, and Applications, in Soybeans as 

Functional Foods and Ingredients, edited by K. Liu, AOCS Press, Champaign, IL, 2005, pp. 134-162. 

145. FDA, HHS, “Food Labeling: Health Claims; Soy Protein and Coronary Heart Disease”, Federal 

Register, Vol. 64, No. 206, pp. 57699-57733 (October 26, 1999). 

146. Johnson, L.A., D.J. Myers, and D.J. Burden, Historical Perspectives on Production and Utilization of 

Soy Proteins. II. Feed and Food Uses and Future Prospects. INFORM 3:429-444 (1992). 

147. U.S. Department of Agriculture Economic Research Service, Industrial Uses of Agricultural 

Materials Situation and Outlook, July 1997, pp. 3-3. 

148. Johnson, L.A., and D.J. Myers. Industrial Uses for Soybeans, in Practical Handbook of Soybean 

Processing and Utilization, edited by D. Erickson, AOCS Press, Champaign, IL, 1995, pp.380-427. 

149. www.soysilk.com (accessed Oct. 2006). 

http://www.soysilk.com/


www.manaraa.com

  50

150. www.soybeanfibre.com/en/index.asp (accessed Oct. 2006). 

151. Campbell, M.F., C.W. Kraut, W.C. Yackel, and H.S. Yang, Soy Protein Concentrate, in New Protein 

Foods, Vol. 5: Seed Storage Proteins, edited by A.M. Altschul and H.L. Wilcke, Academic Press, 

London, 1985, pp. 300-337. 

152. Kolar, C.W., S.H. Richert, C.D. Decker, F.H. Steinke, and R.J. Vander Zanden, Isolated Soy Protein, 

in New Protein Foods, Vol. 5: Seed Storage Proteins, edited by A.M. Altschul and H.L. Wilcke, 

Academic Press, London, 1985, pp. 259-300. 

153. Cone, C.N., and E.D. Brown, Protein product and Process of Making, U.S. Patent 1,955,375 (1935). 

154. Wahlforss, E., Soya Bean Product, U.S. Patent 2,284,700 (1942). 

155. Robbins, F.M., A.G. Bonagura, and R.S. Yare, Process of Preparing Heat-Gelable Soybean Protein, 

U.S. Patent 3,261,822 (1966). 

156. Sair, L., Method of Producing Soy Concentrates, U.S. Patent 3,635,726 (1968). 

157. Murray, E.D., T.J. Maurice, L.D. Barker, and C.D. Myers, Process for Isolation of Proteins Using 

Food-Grade Salt Solutions at Specified pH and Ionic Strength, U.S. Patent 4,208,323 (1979). 

158. Millar, D., Production of Soybean Protein Isolate of Improved Purity, U.S. Patent 4,296,026 (1981). 

159. Garrison, C.M., R.W. Youngquiest, and H.M. Taylor, Isolation of Protein from Vegetable Seed 

Material, U.S. Patent 4,174,315 (1979). 

160. Lawhon, J.T., D. Mulsow, C.M. Cater, and K.F. Mattil, Production of Protein Isolates and 

Concentrates from Oilseed Flour Extracts Using Industrial Ultrafiltration and Reverse Osmosis 

Systems, J. Food Sc. 42:389-394 (1977). 

http://www.soybeanfibre.com/en/index.asp


www.manaraa.com

  51

161. Omosalye, O., and M. Cheryan, Ultrafiltration of Soybean Water Extracts: Processing Characteristics 

and Yields, J. Food Sc. 44:1027-1031 (1979). 

162. Nichols, D.J., and M. Cheryan, Production of Soy Isolates by Ultrafiltration: Factors Affecting Yield 

and Composition, J. Food Sci. 46:367-372 (1981). 

163. Lawhon, J.T., K.C. Rhee, and E.W. Lusas, Soy Protein Ingredients Prepared by New 

Processes-Aqueous Processing and Industrial Membrane Isolation, J. Am. Oil Chem. Soc. 58:377-384 

(1981). 

164. Thomas, R., Soy Proteins and Methods for Their Production, U.S. Patent 6,313,273 (1999). 

165. Shallo, H.E., A. Rao, A.P. Ericson, and R.L. Thomas, Preparation of Soy Protein Concentrate by 

Ultrafiltration, J. Food Sci. 66:242-246 (2001). 

166. Thanh, V.H., K. Okubo, and K. Shibasaki, Major Proteins of Soybean Seeds. A Straightforward 

Fractionation and their Characterization, J. Agric. Food Chem. 24:1117-1121 (1976). 

167. Nagano, T., M. Hirotsuka, H. Mori, K. Kohyama, and K. Nishinari, Dynamic Viscoelastic Properties 

of β-Conglycinin-rich and Glycinin-rich Soybean Protein Isolates, J. Agric. Food Chem. 40:941-944 

(1992). 

168. Wu, S., P.A. Murphy, P.A. Johnson, A.R. Fratzke, and M.A. Reuber, Pilot-plant Fractionation of 

Soybean Glycinin and β-Conglycinin, J. Am. Oil Chem. Soc. 76:285-293 (1999). 

169. Rickert, D.A., L.A. Johnson, and P.A. Murphy, Improved Fractionation of Glycinin and 

β-Conglycinin and Partitioning of Phytochemicals, J. Agric. Food Chem. 52:1726-1734 (2004). 

170. Rickert, D.A., L.A. Johnson, and P.A. Murphy, Functional Properties of Improved Glycinin and 



www.manaraa.com

  52

β-Conglycinin Fractions, J. Food Sci. 69:303-311 (2004). 

171. Deak, N., P.A. Murphy, and L.A. Johnson, Effects of Reducing Agent Concentration on Soy Protein 

Fractionation and Functionality, J. Food Sci. 61:200-208 (2006). 

172. Thiering, R., G. Hofland, N. Foster, G. Witkamp, and L. Wielen, Fractionation of Soybean Proteins 

with Pressurized Carbon Dioxide as a Volatile Electrolyte, Biotech. Bioeng. 73:1-11 (2001). 

173. Thiering, R., G. Hofland, N. Foster, G. Witkamp, and L. Wielen, Carbon Dioxide Induced Soybean 

Protein Precipitation: Protein Fractionation, Particle Aggregation, and Continuous Operation, Biotech. 

Prog. 17:513-521 (2001). 

174. Golubovic, M., M. Ottens, G. J. Witkamp, and L. Wielen, Method of Preparing a Protein Aggregate 

and a Pharmaceutical Composition, PCT Int. Appl., WO 2,005,087,016 (2005). 

175. Byrappa, K., and M.Yoshimura, Handbook of Hydrothermal Technology, Noyes Publications, Noyes 

Publications, Park Ridge, NJ, 2001, pp. 1-7. 

176. Byars, J., Jet Cooking of Waxy Maize Starch: Solution Rheology and Molecular Weight Degradation 

of Amylopectin, Cereal Chem. 80:87-90 (2003). 

177. Inglett, G., Dietary Fiber Gels for Calorie Reduced Foods and Method for Preparing the Same, U.S. 

Patent 5,766,662 (1998). 

178. Kenar, J., Effect of Jet-Cooking on the Structural and Physiochemical Properties of Vegetable Oils 

and Fatty acid Esters, Abstract, 96th Annual Meeting and Expo of the American Oil Chemists' 

Society, 2005, pp.69. 

179. Meyer, W.G., Gluten Treatment, U.S. Patent 2,631,111 (1950). 



www.manaraa.com

  53

180. Hawley, R.L., C.W. Frederiksen, and R.A. Hoer, Method of Treating Vegetable Protein, U.S. Patent 

3,642,490 (1967). 

181. Egger, C.T., and R.E. Olson, Recovery of Protein, U.S. Patent 3,849,391 (1974). 

182. Melcer, I., Steam Injection and Flash Heat Treatment of Isoelectric Soy Slurries, U.S. Patent 

4,054,679 (1977). 

183. Johnson, L.A., C.W. Deyoe, and W.J. Hoover, Yield and Quality of Soymilk Processed by 

Steam-infusion Cooking, J. Food Sci. 46:239-243 (1981). 

184. Johnson, L.A., C.W. Deyoe, W.J. Hoover, and J.R. Schwenke, Inactivation of Trypsin Inhibitors in 

Aqueous Soybean Extracts by Direct Steam Infusion, Cereal Chem. 57:376-379 (1980). 

185. Johnson, L.A., C.W. Deyoe, W.J. Hoover, and J.R. Schwenke, Modeling the Kinetics of Heat 

Inactivation of Trypsin Inhibitors during Steam-Infusion Cooking of Soymilk, Trans. ASAE 

23:1326-1329 (1980). 

186. Wang, C., and L.A. Johnson, Functional Properties of Hydrothermally Cooked Soy Protein Products, 

J. Am. Oil Chem. Soc. 78:189-195 (2000). 

187. Wang, C.Y., Hydrothermal Processing of Soy Protein Products, Ph.D. Thesis, Iowa State University, 

Ames, IA, 1993, pp. 73-111. 

188. Singh, H, F. MacRitchie, Y. Kim, R.L. Madl, and T.J. Herald, Functional Modification of Vital 

Wheat Gluten with Corn Syrup Using Hydrothermal Treatment, J. Sci. Food Agric. 86:251-257 

(2006). 

189. Miller, D.M., and M.D. Wilding, Method of Preparing Vegetable Protein Concentrates, U.S. Patent 



www.manaraa.com

  54

723,407 (1973). 

190. Howard, P.A., M.F. Campbell, and D.T. Zollinger, Water-soluble Vegetable Protein Aggregates, U.S. 

Patent 4,234,620 (1980). 

191. Gomi, T., Y. Hisa, S. Yuji, and T. Soeda, Process for Preparing Improved Soy Protein Materials, U.S. 

Patent 4,113,716 (1978). 

 



www.manaraa.com

  55

Chapter 1. Refunctionalization of Extruded-Expelled Soybean Meals 

 
 
 

A paper published in the Journal of American Oil Chemists’ Society1 
 

H. Wang2, T. Wang3, and L.A. Johnson4 

 

 
Department of Food Science and Human Nutrition 

Center for Crops Utilization Research, 
Iowa State University 

Ames, Iowa 50011-1061 
 
 
 
 
 
 
 
 

Running title: Hydrothermal cooking of EE meals 
 
Corresponding author: Tong Wang, Ph.D. 

Department of Food Science and Human Nutrition 
Iowa State University 
Ames, IA 50011-1061 
Phone: 515-294-5448 
Fax: 515-294-8181 
Email: tongwang@iastate.edu 
 
 
 
 

 
_____________________________ 
1 Reprinted with permission of Journal of American Oil Chemists’ Society, 81:789-794 (2004). 
2 Graduate student, primary researcher and author. 
3,4 Associate Professor, and Professor/Director, respectively. 

mailto:tongwang@iastate.edu


www.manaraa.com

  56

ABSTRACT: Soybean meals produced by extruding-expelling (EE) have poor functional properties due 

to heat denaturation of the proteins, which limits their utilization in foods. Hydrothermal cooking (HTC), a 

treatment in which steam (150°C) and high shear are applied to a slurry of soybean meal, was used to 

refunctionalize EE protein meals. Two EE samples with protein dispersibility indexes (PDI) of 35 and 60 

were used, along with solvent-extracted white flakes and full-fat whole soy meal as controls. Two HTC 

methods were explored: one method used treatment temperature of 154°C and seven different residence 

times, controlled by varying the holding tube length; the other involved flashing the treated slurry directly 

into atmosphere without any back-pressure regulation or holding. Effects of residence time on functional 

properties of the samples were investigated. The maximum effect of HTC conducted with the use of 

holding tubes (with-holding-tube HTC) was also compared with that of flash-out HTC. Solids 

dispersibility, protein dispersibility, and emulsification capacity of both EE meals were significantly 

improved by both types of HTC treatments. The flash-out HTC showed more benefits than the 

with-holding-tube HTC in refunctionalizing heat-denatured EE protein. For example, the solids 

dispersibility, protein dispersibility and emulsification capacity of EE meal with PDI of 35 were improved 

2.0, 4.4, and 2.1 times, respectively, by flash-out HTC treatment. Therefore, the HTC treatment partially 

restored the native functional properties of soy protein in heat-denatured samples.  

 

KEY WORDS: Dispersibility, emulsification capacity, extruded-expelled soybean meal, foaming property, 

functional properties, hydrothermal cooking, refunctionalization. 
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Modern solvent extraction of soybean oil has replaced the traditional mechanical oil extraction, because of 

its processing scale and efficiency, its high oil recovery, and its yield of fully functional defatted flakes. 

But recently, interest in mechanical processing has been rekindled, especially after the introduction the 

extruding-expelling (EE) concept. In 1987, Nelson et al. (1) investigated coupling dry extrusion with the 

mechanical expelling process. When soybeans passed through the extruder, heat was generated, plant 

tissues and cell structures were disrupted, and oil was released from seed matrix. The discharged extrudate 

was conveyed to an expeller where the oil was pressed out. A typical oil recovery of 70% and a press cake 

with 50% protein, 6% oil, and 90% inactivation of trypsin inhibitors can be obtained from dehulled 

soybean (1). Compared with solvent extraction, EE has several advantages, such as low capital cost, 

relatively simple machinery, no solvent use, and a small production scale. It is ideal for identity-preserved 

(IP) processing. 

With high stability, low phospholipid and FFA contents, and a pleasant nutty flavor, EE oil may be 

consumed after minimal refining or even without refining. Studies by Wang and Johnson (2, 3) have 

shown that with minimal refining, a unique oil product can be obtained. Utilization of EE proteins as a 

food ingredient has also been studied (4, 5). Traditionally, EE meals are used as livestock feed (6, 7) 

because their poor functional properties, caused by protein heat-denaturation, limit food use. If the 

heat-denatured protein can be refunctionalized, production of various new protein products will be 

possible and more benefits can be realized by EE technology. 

A promising method of protein refunctionalization is hydrothermal cooking (HTC), which 

involves a system commonly referred to as jet-cooker, where high-temperature steam and a protein slurry 
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are infused into a holding tube through a restriction orifice. Johnson et al. (8) showed that for soymilk 

preparation, HTC treatment increased soybean protein recovery from conventional 70% to about 90%. 

Wang and Johnson (9) employed HTC to refunctionalize ethanol-denatured soy protein concentrate, and 

their results showed significant increases in the major functional properties, including dispersibility, 

emulsification, and foaming. There has been little effort to refunctionalize heat-denatured proteins, 

especially those from EE process. We hypothesize that HTC can improve the functional properties of 

heat-denatured EE protein. The objective of this study was to examine the effects of HTC on the functional 

properties of EE protein meals having different degrees of heat denaturation. 

 

EXPERIMENTAL PROCEDURES 

Soybean meal samples. Two EE flours (EE35 and EE60) were made from cracked and dehulled soybeans 

(Stine Seed Co., Adel, IA), and their protein denaturation and oil content were measured as protein 

dispersibility index (PDI) of 35.3 and 62.0 and oil content of 7.6 and 13.6%, respectively. The EE system 

consisted of an Insta-Pro International extruder Model 2500 and screw press Model 1500. The following 

extrusion parameters were used to produce the extruded protein meals: 11-11-6-6 shear lock configuration, 

double flight screws, and a restriction die setting at 3/8 in. (0.94 cm). The temperature in the last segment 

of the extruder barrel was 132-143°C, and the total residence time was about 20-25 s. One sample of 

solvent-defatted white flakes (ADM Nutrisoy® defatted flakes, PDI of 90; ADM, Decatur, IL) and 

Iowa-produced soybeans were selected as controls. All samples were ground by FITZ®MILL (Model 

DAS06; The Fitzpatrick Company, Elmhurst, IL) with a 40-mesh screen. To avoid any further protein 
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denaturation, caution was taken to prevent any overheating of the mill. All samples were made into a 20% 

slurry stirred with a BiomixerTM handheld mixer (ESGE Ltd., Mettlen, Switzerland), then pumped through 

a Stephan mill (Type MC15; A. Stephan u. Söhne GmbH & Co., Hameln, Germany) to achieve thorough 

dispersion before HTC treatment. 

HTC (jet-cooker) treatment. A Moyno pump (2MI type SSQ; Robin and Myers, Inc., Springfield, 

OH) was connected to a hydroheater (size 300, type B; Hydrothermal Co., Milwaukee, WI) where 

culinary-grade steam (~90 psi pressure, 6.5 kg/cm2) was infused to give the heat and shear treatment (Fig. 

1). Two types of HTC treatments were used. One used holding tubes (and was termed “with-holding-tube 

HTC”) and involved combinations of holding tubes (2.54 cm i.d. and 2.66 cm o.d.) of various lengths that 

gave seven holding times for each sample. All the holding tubes were insulated. The lengths of the seven 

holding tubes were: 2.58, 4.48, 6.31, 8.22, 10.66, 13.17, and 16.28 m. Due to viscosity differences among 

the samples, the residence times of different samples were different even when using the same tube length. 

The residence time was measured by injecting Brilliant Blue R-250 into the slurry that was about to go 

into the stabilized or equilibrated HTC system and observing the time needed for the colored material to 

emerge from the outlet. A back-pressure valve, after which the sample was released into the flash tank, was 

used to adjust the temperature. Cooking temperature was maintained at 154±0.6°C and monitored using a 

thermocouple. The second type of HTC treatment was flashing-out HTC. After the slurry had been infused 

with steam in the hydroheater, the product was discharged directly into atmosphere without any holding 

tube or back-pressure control. There was still a short, open tube from hydroheater to outlet, but the 

temperature was about 104°C, much lower than 154°C. 
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The feeding speed for all samples was maintained at a constant rate, 1.5 kg/min, as standardized 

with water. The released slurry was cooled to below 40°C in a jacketed ice bath. Treated samples were 

stored in a cold room at 5°C for further analyses. 

Characterization of functional properties. All concentrations used were based on dry-matter basis 

(measured after drying at 130°C for 3 h). Protein content was measured by Kjeldahl method (with a 

conversion factor of 6.25). Solids dispersibility and protein dispersibility were measures of the total dry 

matter and protein matter, respectively, in the supernatant of a 10% suspension after centrifuging at 1050 × 

g and 5°C for 5 min, which was a modification to a method of Johnson (10).  

There are many methods to measure the solubility (or dispersibility) of soybean proteins. Some 

methods are recommended by industry associations and thus are more popular such as protein 

dispersibility index (PDI) or nitrogen solubility index (NSI). Others are used in feed situations (such as 

KOH solubility). The key steps for measuring PDI are blending 20 g of protein in 300 ml water using a 

standardized blender at 8,500 rpm for 10 min at 25°C, centrifuging at 1,400 x g for 10 min, and then 

measuring protein content in the supernatant (14). For NSI, the key steps are mixing 5 g protein with 20 ml 

water using a blender at 120 rpm for 2 h at 30°C, centrifuging at 1,500 rpm for 10 min, filtering the 

supernatant through a plug of glass fiber, and then measuring protein content in the filtrate (15). For KOH 

solubility the key steps are stirring 1.5 g protein in 75 ml 0.2% KOH for 20 min on a magnetic stir plate, 

centrifuging at 2,700 rpm for 15 min and then measuring protein content in the supernatant (16). Despite 

differences, their rationales are fundamentally the same, i.e. the sample is blended in water or diluted alkali 

solution, centrifuged or filtered to remove insoluble (or indispersible) and the protein remaining in the 



www.manaraa.com

  61

supernatant is quantified as the soluble (or dispersible) fraction. 

Emulsification capacity was measured based on a method of Swift et al. (11). Twenty-five mL of 

a 2% dispersion was put into a 400-mL plastic beaker, and a handheld BiomixerTM (BioSpec Prodcts, 

Bartlesville, OK) was used at high speed (1,200 rpm) to emulsify the protein suspension with a 

commercially refined soybean oil (Bakers & ChefsTM vegetable oil; North Arkansas Wholesale Co., 

Bentonville, AR), which was introduced at a rate of about 0.5 g/s. Emulsification capacity was determined 

as the amount of oil that had been used when an inversion was observed. The inversion point was visually 

determined as the breakdown of the emulsion, i.e., the creamlike emulsion suddenly broke into separate oil 

and water phases and viscosity dropped suddenly. A fat-soluble dye, Red Fat 7B, was added at about 4 

ppm to the oil to make the end point easy to observe.  

To quantify foaming properties, a foaming device, made by fusing a fritted ceramic disk to a 

graduated glass column, was used (12). Nitrogen gas was purged at 16.7 mL/s to produce 300 mL of foam 

from 100 mL of 1% sample suspension. Three measurements were made: time of foaming (tf, in s), volume 

of sample suspension consumed at the end of foaming (Vmax, in mL), and time used for one-half of the 

incorporated suspension to drain back (t1/2, in s). From these measurements, three foaming parameters were 

calculated: foaming capacity (FC) = 300/(16.7·tf), which was the number of milliliters of foam formed per 

milliliter of N2 purged; K value = 1/(Vmax·t1/2), in units of 1/(mL·s), which was used to describe foam 

stability (a higher value indicates lower stability); and Vi=Vmax/tf, in unit of mL/s, which was foaming 

speed, i.e., the speed of liquid being incorporated into foams. 

Experimental design and data analysis. HTC treatments were conducted in duplicate. All 
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functional property measurements were in triplicate except for Kjeldahl, which was done in duplicate. 

Statistical analysis was performed using the General Linear Model procedures of SAS 8.02 (13). For all 

the functional properties of each sample, the differences among the seven residence times were examined. 

Comparisons were also made among samples of control, maximum value of the seven with-holding-tube 

HTC, and flashing-out HTC treatments. 

 

RESULTS AND DISCUSSION 

Effect of HTC holding time on EE meal refunctionalization. HTC significantly improved the solids 

dispersibility of EE35 and whole soy meal (with short residence time), but it reduced that of white flakes. 

No statistically significant effect was found on EE60 (Fig. 2A). The LSD values used to compare these 

differences are presented in Table 1. The two EE meals followed a similar trend. They reached the 

treatment maximum and then remained relatively unchanged despite the increase in residence time. Whole 

soy meal achieved the maximum solids dispersibility, from 53 to 70%, at a residence time of 33 s, which 

then decreased. This result agreed with that of Johnson et al. (6), in which solids dispersibility increased 

from 65 to 86% at 34 s. The different maximal values may be due to different shear forces between two 

systems. After 33 s the solids dispersibility of the whole soy meal decreased steadily until it became stable 

at 50% after 60 s. EE35 achieved the highest value of 52% at 42 s; after that, the values remained at nearly 

50% except at 100 s (unexplainable drop). The solids dispersibility of white flakes decreased from 61 to 

40% at about 16 s, after which it increased to 51% and then decreased to about 40%, which indicates 

protein denaturation by HTC treatment. All data show that the two EE meals and the whole soy meal 
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benefited from HTC, whereas the white flakes were damaged by such treatment. 

Protein dispersibility followed a trend similar to that of solids dispersibility, but the changes with 

the increase of residence time were more notable (Fig. 2B) than that of solids dispersibility. EE60 

performed more like whole soy meal than EE35. The increases for EE60 and whole soy meal were from 

47 to 57% and 57 to 66%, respectively. The maximum protein dispersibility for EE35 was 43%, an 

increase of more than three times from the untreated value of 13%. After HTC, the protein dispersibility of 

white flakes was reduced from 70 to 36%, after which it was increased to 47% then decreased to about 

23% with an increase of residence time. It is interesting to observe that after a residence time 120 s, EE35, 

EE60, and whole soy meals had almost the same protein dispersibility of 42%, although the protein 

denaturation in the starting materials were different (their PDI were 35, 60 and 90, respectively). The 

white flakes from the solvent extraction process had less than 1% of oil, whereas whole soy meal was 

full-fat. Their different performance during HTC treatment suggests that the oil in the samples may have 

played protective roles in preventing soybean protein from forming big, non-dispersible aggregates, or in 

other words, oil on the surface of the particles might have helped smaller aggregates or protein molecules 

(though mostly denatured) stay dispersible. EE60 had an oil content of about 12% and relatively high PDI, 

so it is understandable that it showed a response similar to that of the whole soy meal during HTC 

treatment. After HTC, EE35 had a greater quality improvement than EE60. In the EE process, soybean 

protein experienced high shear, pressure, and heat, and more and larger denatured protein aggregates were 

probably formed in EE35 than in EE60. During HTC treatment, the soybean slurry was subjected to 

several forces and conditions: One was the shear force, generated mainly at the point of steam infusion; 
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another was the high-temperature treatment (154°C). Supposedly, shear forces act to break down the big 

aggregates into smaller ones, whereas high temperature facilitates the aggregation of native proteins. The 

outcomes of HTC are believed to be the mixed actions of all these major forces. 

The emulsification capacities (EC) of untreated materials were very different.Samples having the 

most native proteins had much higher value (128 and 148 g oil/0.5 g sample for whole soy meal and white 

flakes, respectively), whereas values for the two EE meals were below 60 g oil/0.5 g sample (Fig. 3). After 

HTC, both EE meals quickly gained EC to about 100 g oil/0.5 g sample at the shortest residence times of 

24 and 26 s, respectively. They remained almost the same even with longer residence time. EC values of 

whole soy meal and white flakes dropped abruptly to 90 and 100, respectively. There were some 

similarities between EC and protein dispersibility, e.g., for untreated samples, high solids or protein 

dispersabilities always corresponded to high EC. But the EC curves of HTC-treated samples were quite 

smooth, with no apparent peaks and fluctuations as shown in protein dispersabilities. This might be 

because that EC test itself was not as sensitive to aggregate size as protein dispersibility was. 

HTC did not significantly affect the foaming capacity of EE60, white flakes, and whole soy meal, 

but it significantly increased that of EE35 (Fig. 4). HTC improved the foaming speed of EE35, white 

flakes, and whole soy meal. For EE35, the foaming speed increased steadily as residence time increased. 

For EE60, the value decreased at the beginning but increased slowly with the increasing residence time. 

Whole soy meal and white flakes showed considerably different curves, and in general, their values 

slightly increased with time. The two EE samples had very similar performances with longer residence 

times. K value is an indicator of foaming stability, and the lower the value, the higher the stability of the 
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foam. HTC lowered the K value of EE35, which indicates significant improvement in its foaming stability. 

For the other three samples, the values fluctuated, but the overall stability did not change considerably 

during the various lengths of HTC treatments. In general, HTC improved the foaming properties of EE35, 

but its effects on EE60, white flakes, and whole soy meal were not significant. 

Effect of flashing-out HTC treatment on EE meal refunctionalization. When testing the effect of 

residence time, we observed that most of the functional property (such as dispersibility and EC) 

improvements happened at short residence times (Figs. 2-4). Longer residence time had limited (if any) 

effects on further refunctionalization of EE meals. Therefore, a flash-out HTC experiment was carried out 

in which all the conditions were the same as with-holding-tube HTC except the treated slurry was flashed 

out without a valve to maintain temperature at 154°C. Because there was a short tube from the point of 

steam infusion to flash outlet, a 6-s “residence time” was actually applied. Temperature at the point of 

infusion was about 160°C, and at the outlet, about 104°C. 

For comparison, the maxima of all quality measurements were selected for each sample from 

with-holding-tube HTC experiment. Since not all the maxima were achieved at the same residence time 

(or at the same tube length), these data represent actual achievable maxima of with-holding-tube HTC. 

Untreated samples were also included in the comparison. 

Flashing-out HTC resulted in two-fold increase in solids dispersibility of EE35, which was also 

significantly higher than the maximal value in the with-holding-tube HTC treatment (58.4 vs 52.3%) 

(Table 2). It also improved the solids dispersibility of whole soy meal, and the increase was the same as 

the maximal value of with-holding-tube HTC treatment. There was no treatment difference for EE60. For 
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white flakes, flashing-out HTC did not change its solids dispersibility, but with-holding-tube HTC reduced 

it from 62 to 51%. Similar to solids dispersibility, flashing-out HTC increased protein dispersibility more 

than the with-holding-tube HTC treatment, expect for EE60. For EE35, flashing-out HTC increased the 

protein dispersibility by more than four times, compared to two times for solids dispersibility. A similar 

trend was observed for whole soy meal and white flakes. It indicates that increase in protein dispersibility 

was directly related to the improvement in solids dispersibility. Flashing-out HTC resulted in solids and 

protein dispersibilities that are as good as or better than those of with-holding-tube HTC. This may be 

explained by less heat treatment in flashing-out HTC (shorter time and lower temperature after steam 

infusion), resulting in less denaturation or production of smaller protein aggregates. 

As with-holding-tube HTC, flashing-out HTC significantly improved the ECs of EE35 and EE60 

but reduced that of white flakes and whole soy meal (Table 3). Flashing-out HTC improved EC to lesser 

degree than with-holding-tube HTC did for the two EE samples. Flashing-out HTC reduced EC to a 

greater degree than with-holding-tube HTC did for the whole soy meal and white flakes. For soy proteins, 

EC is believed to relate to amphiphilicity, which is the overall ability to interact with both polar molecule 

and nonpolar molecules to produce a stable emulsion. More heat treatment (higher temperature or longer 

time) changed soybean protein surface properties in such a way that more amphiphilic ability was 

produced in with-holding-tube HTC than in flashing-out HTC. Despite not all the functional property 

maxima could be achieved under the same conditions in with-holding-tube HTC and that the operations 

were not as simple as flashing-out HTC, flashing-out HTC was a very useful HTC method to 

refunctionalize EE soybean meals.  
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Flashing-out HTC increased the foam stability of EE35, but its stability was lower than the 

maximum in with-holding-tube HTC. For EE60, there was no significant difference among the treatments, 

and no significant difference was observed between the two HTC treatments for white flakes (Table 3). 

Flashing-out HTC significantly reduced the foaming stability of whole soy meal. No significant difference 

was observed between the stability of untreated whole soy meal and that of maximal value of 

with-holding-tube HTC. Foaming capacity and foaming speed showed similar mixed results (data not 

shown). 

This study demonstrated that HTC can effectively improve most functional properties of 

heat-denatured soy protein. Most of the maximal treatment effects were achieved in short residence time at 

temperature <154°C. Longer residence time usually decreased the functional properties. The results 

suggested that solids and protein dispersibilities were improved much more in flashing-out HTC than in 

with-holding-tube HTC. Emulsification capacities of the two EE samples were also increased by 

flashing-out HTC treatment, but the values were lower than the maximal increases achieved by 

with-holding-tube HTC. Foaming properties were somewhat mixed by the two HTC treatments. 

Flashing-out HTC showed a certain promise, not only for the effective refunctionalization but also for the 

ease of operation. For both HTC treatments, the more heat-denatured the EE protein is, the more 

refunctionalization can be achieved. This observation suggests that oil recovery in EE process need not to 

be sacrificed if HTC treatment is to be used for protein refunctionalization. Since EE meals with PDI of 30 

are typical EE processing products, they can be readily hydrothermally cooked to produce highly 

functional value-added food ingredients. This will further enhance the value and application of 
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extruding-expelling processing. 
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Figure captions: 

FIG. 1. Hydrothermal cooking system (jet-cooker). 

FIG. 2. Effect of residence time during hydrothermal cooking on (A) solids and (B) protein dispersibilities 

of various soy protein samples. 

FIG. 3. Effect of residence time during hydrothermal cooking on the emulsification capacities of various 

soy protein samples. 

FIG. 4. Effect of residence time during hydrothermal cooking on foaming properties of various protein 

samples (A) foaming capacity; (B) K value, or foam stability; (C) foaming speed. 
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FIG. 1. Hydrothermal cooking system (jet-cooker). 
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FIG. 2. Effect of residence time during hydrothermal cooking on (A) solids and (B) protein dispersibilities 
of various soy protein samples.  
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FIG. 3. Effect of residence time during hydrothermal cooking on the emulsification capacities of various 
soy protein samples. 
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FIG. 4. Effect of residence time during hydrothermal cooking on foaming properties of various protein 
samples (A) foaming capacity; (B) K value, or foam stability; (C) foaming speed. 
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TABLE 1 

LSD0.05 Values for the Functional Properties of Soy Protein Meals Subjected to Hydrothermal Cooking 
Treatmentsa 

Property EE35 EE60 White flakes Whole soybeans 
Solids dispersibility 2.50* 6.74 7.46* 7.99* 
Protein dispersibility 3.30* 9.20 11.02* 15.96* 
Emulsification capacity 6.65 6.77* 16.58* 4.73* 
Foaming speed 0.051* 0.054* 0.106* 0.381 
Foaming capacity 0.048* 0.039* 0.043* 0.206 
Foaming K value 0.0002 0.0002 4.7E-5* 0.0003 

a *, LSD values with significant treatment (residence time) effect (P<0.05). 
Units: solids and protein dispersibilities, %; emulsification capacity, g soybean oil/0.5g sample; foaming 
speed, mL/s; capacity, mL/mL; and K, 1/(mL·s). 
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TABLE 2 

Comparison of Solids and Protein Dispersibility between Flashing-out Hydrothermal Cooking (HTC) and 
With-holding-tube HTC Treatments a 

Property/Treatment EE35 EE60 White flakes Whole soybeans 
Solids dispersibility, %     

Untreated 29.4c 48.7a 61.6a 53.6b 
Flashing-out HTC 58.4a 61.0a 62.5a 69.8a 
With-holding-tube HTC 52.3b 59.2a 51.3b 69.3a 

Protein dispersibility, %     
Untreated 13.5 c 46.5 a 70.4 a 56.5 c 
Flashing-out HTC 58.6 a 64.2 a 74.4 a 78.7 a 
With-holding-tube HTC 44.3 b 50.0 a 47.3 b 66.2 b 

aThe with-holding-tube HTC treatment values are the highest values obtained with various residence times; 
means with same superscript are not significantly different (P=0.05) within the same column and under the 
same quality parameter.
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TABLE 3 
Comparison of Emulsification Capacity and Foaming K Value between Flashing-out HTC and 
With-holding-tube HTC Treatments a 
Property/Treatment EE35 EE60 White flakes Whole soybeans 
Emulsification capacity     

Untreated 38.1c 50.3c 148.3a 127.8a 
Flashing-out HTC 80.0b 91.8b 96.3b 51.9c 
With-holding-tube HTC 103.2a 104.1a 101.4b 99.1b 

Foaming K value     
Untreated 0.0011a 0.0003a 0.0001a 0.0002b 
Flashing-out HTC 0.0004b 0.0003b 0.0001a 0.0004a 
With-holding-tube HTC 0.0002c 0.0003a 0.0001a 0.0002b 

aThe with-holding-tube HTC treatment values are the highest values obtained with various residence times; 
means with same superscript are not significantly different (P=0.05) within the same column and under the 
same quality parameter. Emulsification capacity is expressed as g soybean oil/0.5g sample; foaming K 
value is in 1/(mL·s). 



www.manaraa.com

  78

Chapter 2. Preparation of Soy Protein Concentrate and Isolate 

from Extruded-Expelled Soybean Meals 

 
A paper published in the Journal of American Oil Chemists’ Society1 

 
H. Wang2, L.A. Johnson3, and T. Wang4 

 

 
Department of Food Science and Human Nutrition 

Center for Crops Utilization Research, 
Iowa State University 

Ames, Iowa 50011-1061 
 
 
 
 
 
 

Running title: Soy protein concentrate and isolate 
 
 
Corresponding author: Tong Wang, Ph.D. 

Department of Food Science and Human Nutrition 
Iowa State University 
Ames, IA 50011-1061 
Phone: 515-294-5448 
Fax: 515-294-8181 
Email: tongwang@iastate.edu 

 
 
 
 
 
 
_____________________________ 
1 Reprinted with permission of Journal of American Oil Chemists’ Society, 81:713-717 (2004). 
2 Graduate student, primary researcher and author. 
3,4 Professor/Director, and Associate Professor, respectively. 



www.manaraa.com

  79

ABSTRACT: Soy protein concentrates (SPC) and soy protein isolates (SPI) were produced from 

hexane-defatted soybean white flakes and from two extruded-expelled (EE) soybean meals with different 

degrees of protein denaturation. Processing characteristics, such as yield and protein content, and the key 

protein functional properties of the products were investigated. Both acid- and alcohol-washed SPC from 

the two EE meals had higher yields but lower protein contents than SPC prepared from white flakes. 

Generally, acid–washed SPC had much better functional properties than those from alcohol washing. The 

SPI yield was highly proportional to protein dispersibility index (PDI) of the starting material, so the EE 

meal with lower PDI had lower SPI recovery. The protein content in SPI prepared from EE meals was 

about 80%, which was lower than that from white flakes. Nevertheless, SPI from EE meals had functional 

properties similar to or better than those from white flakes. The low protein contents in SPC and SPI 

prepared from EE meals were mainly due to the presence of residual oil in the final products. SPI made 

from EE meals had higher concentration of glycinin relative to β-conglycinin than that from white flakes. 

 

KEY WORDS: Extruding-expelling, functional property, soy protein concentrate, soy protein isolate. 
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Soy protein products have become increasingly popular because of their low price, high nutritional quality, 

and versatile functional properties. Two important soybean protein products are soy protein concentrate 

(SPC) and soy protein isolate (SPI). SPC is defined as an edible protein product with a protein content of 

at least 65% on dry weight basis (1), whereas SPI is a product with at least 90% protein on dry weight 

basis (2). Currently, flash-desolventized solvent-extracted white flakes (typically containing 50% protein) 

are generally the starting materials for SPC and SPI preparation. Other soybean meals or flours in addition 

to white flakes may also be used as starting materials provided that the final products meet protein content 

specifications and demonstrate desired functional properties.  

Soybean meals produced from the extruding-expelling (EE) processing of soybeans may be used 

as starting materials for SPC and SPI preparation. EE is a mechanical processing technology that allows 

small-scale production of protein meals having a high oil content and partial recovery of oil. Extrusion, the 

first step of the processing, provides a heat treatment that reduces trypsin inhibitors, permitting the use of 

the full-fat or defatted protein meals as livestock feed. The extrudate can be pressed by an expeller to 

partially recover the oil. The protein in the meal typically is extensively heat-denatured by extrusion. 

Depending on the processing conditions, EE meals with different oil contents and protein denaturation can 

be achieved (3). Advantages of EE technology include process simplicity, low capital investment, no need 

for organic solvents, and applicability to identity-preserved (IP) processing due to its flexibility and 

efficiency in processing small lots of soybeans. 

SPC preparation involves insolubilization of the protein to remove soluble sugars. In SPI 

preparation, proteins are solublized first to remove the insoluble fiber, then they are precipitated to remove 
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soluble sugars. How the yield and functionality of the SPC and SPI are affected when the proteins in the 

starting material are heat denatured are unknown. We hypothesized that EE meals would be good starting 

materials for SPC and SPI products because of they are partially defatted and have reasonably high protein 

solubility. The objectives were to determine the feasibility of preparing SPC and SPI from EE meals and to 

evaluate the functional properties of these SPC and SPI products in comparison with those produced from 

defatted, or white, soy flakes. 

 

EXPERIMENTAL PROCEDURES 

EE meals and defatted white flakes. An Insta-Pro International Model 2500 extruder and Model 1500 

screw press were used to process the dehulled and cracked soybeans (Stine Seed Co., Adel, IA) into EE 

meals. The following extruder processing parameters were used: 11-11-6-6 shear lock configuration, 

double flight screws, and a restriction die opening setting of 3/8 in. (0.94 cm). The temperature in the last 

segment of the extruder barrel was 132-143°C, and the total residence time was about 20-25 s. EE 

processing was conducted in the commercial facility of Nutriant (Vinton, IA). Two EE flours (ground 

meals), EE35 and EE60, with oil contents of 7.6 and 13.6% and PDI of 35.3 and 62.0, respectively, were 

prepared. Defatted white flakes (Nutrisoy® , 90 PDI) were purchased from Archer Daniels Midland 

(Decatur, IL). EE meals and defatted soy flakes were ground into flour using a Fitz MILL® (Model DAS06, 

The Fitzpatrick Company, Elmhurst, IL) with a 40-mesh screen. To avoid any further heat denaturation of 

the proteins, care was taken to minimize heat generation during milling. All flours were stored in sealed 

plastic bags at -20°C before use. 
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SPC and SPI preparation. Acid-washed SPC, alcohol-washed SPC, and isoelectric SPI were 

prepared in the pilot plants of the Center for Crops Utilization Research (CCUR) employing modified 

protocols of standard methods (4) (Figs. 1-3). For acid washing, the standard method uses a ratio of 10:1 to 

20:1 of water/soybean meals, but 10:1 ratio was used in this study. The centrifugation force was 14,000 × 

g, at 15°C to reduce the protein solubility in the whey. For alcohol washing, 60% aqueous alcohol was 

used, compared with 20-80% required in conventional method. According to Berk (5), on either side of 

60%, soy protein solubility tends to increase. For the SPI procedure, pH 8.5 was used to solublize the soy 

protein, compared with pH 7.5-9 in conventional procedure. According to Berk (5) cystine tends to be 

destroyed at >9 pH with the formation of dehydroalanine, which can further react with free ε-amino 

groups of lysine to produce lysinoalanine, whose toxicological aspect is not fully understood. The 

supernatant was refrigerated at 4°C after adjusting pH to 4.5, to facilitate the formation of larger and 

stronger curds. Centrifugation conditions were the same as those used in SPC preparations. 

Analytical methods. All concentrations and final data were expressed as dry weight basis 

(measured after drying at 130°C for 3 h). All protein contents were measured by Kjeldahl method (6), and 

a 6.25 conversion factor was used to calculate protein content. Solids dispersibility and protein 

dispersibility were measured based on the method of Johnson et al. (7). Briefly, a 10% w/w (protein 

product) dispersion was prepared by stirring for 20 min and cooling for 1 h at 5°C. After centrifugation at 

1,050 × g, for 5 min at 5°C, the supernatant fraction was quantified. The dispersible solids was measured 

by drying and weighing of the total solids in supernatant, and the dispersible protein was measured by 

using the Kjeldahl method as just discussed to quantify proteins in the supernatant fraction. This protein 
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dispersibility is different from the standard PDI by the AOCS official method (8) in that the measurement 

conditions are different. 

Emulsification capacity was measured based on a method introduced by Swift et al. (9). A 25-mL 

aliquot of a 2% (w/w) dispersion of protein product was placed in a 400-mL plastic beaker. Fully refined 

soybean oil was added at about 0.5 g/s and mixed with a hand-held mixer. Emulsification capacity was 

defined as the amount of oil that could be emulsified until the inversion point was observed (9). A 

fat-soluble dye, Red Fat 7B (Sigma-Aldrich Co., St. Louis, MO) was added in oil at about 2 ppm to 

enhance the detection of the inversion point. 

Measuring foaming properties involved using a foaming device, which consisted of a graduated 

glass cylinder with a ceramic frit fused at the bottom. Nitrogen gas was purged at 16.7 mL/s to make a 

final 300 mL foam from 100 mL of 1% protein sample suspension. Three measurements were made (10): 

time to reach the final volume (tf, in s), volume of liquid sample converted to foam at the very end of 

foaming (Vmax, in mL), and time required for half of the liquid incorporated into foam to drain back into 

the liquid fraction (t1/2, in s). From these measurements, three foaming parameters were calculated: (i) 

foaming capacity (FC), an indication of the milliliters of foam formed per milliliter of N2 purged, and 

calculated as FC = 60 × 300/(16.7 × tf) in mL/mL unit; (ii) K value, which describes foam stability (a 

higher value indicating lower stability), calculated as K = 1/(Vmax × t1/2) in ml-1×s-1 unit; and (iii) foaming 

speed (FS), Vi, which describes the rate of liquid incorporated into foam and is calculated using Vi = 

Vmax/tf in units mL/s. 

Composition of alcohol-washed SPC and SPI. The total lipid content as determined by acid 
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hydrolysis and crude fiber were determined by Woodson-Tenent Laboratories, Inc. (Des Moines, IA), 

according to standard AOAC methods (11, 12). The total carbohydrate was quantified using the 

phenol/sulfuric acid method (13). The ratio of β-conglycinin to glycinin in the protein products was 

evaluated by scanning densitometry following the method of Rickert et al. (17). The SDS-PAGE gels were 

prepared according to Jung et al. (18) with glycinin and β-conglycinin standards provided by P. Murphy at 

Iowa State University. 

Experimental design and data analysis. All analyses were repeated three times except for Kjeldahl 

measurement, which was duplicated. SPC preparation was performed following a 3 × 2 factorial design, 

with three protein samples and two washing methods (alcohol and acid). For SPI, three protein samples 

and only one preparation method were used. Statistical analysis was performed using General Linear 

Model procedures of SAS 8.02 (14). 

 

RESULTS AND DISCUSSION 

Preparation and functional properties of SPC. The method of SPC preparation, i.e., acid or alcohol wash, 

and the type of soybean material significantly influenced yield and protein content of SPC, as shown in 

Table 1. Wash method and sample type had significant interactions with all quality and functional 

parameters except for protein content. Alcohol washing resulted in significantly higher SPC and protein 

yields than acid washing, especially when using white flakes, however, protein contents of SPC from acid 

washing were statistically higher than those from alcohol washing. These data suggest that the acid 

washing removed more soluble sugars and recovered relatively more proteins than alcohol washing. SPC 
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prepared from the two EE meals had significantly lower protein content than prepared from white flakes. 

The difference was caused mostly by residual oil content in the SPC (Table 2). For example, total lipid 

contents of alcohol-washed SPC were 3.4, 22.2, and 12.0%, whereas the protein contents were 67.5, 52.2, 

and 58.8% for white flakes, EE60, and EE35, respectively. Oil in initial EE meals could not be removed by 

either alcohol or acid washing, resulting in lower protein content in the final SPC products. It is 

noteworthy that the oil contents measured by the acid hydrolysis method were always higher than those 

measured by standard total lipid quantification methods, such as the Goldfish or Soxhlet method. For 

example, oil contents of EE35 and EE60 meals were 7.6 and 13.6% by Soxhlet extraction, but 9.8 and 

16.7% by the acid hydrolysis procedure (Table 2). 

In contrast to alcohol washing, protein yields from both EE meals by acid washing were higher, 

by about 5%, than those from white flakes as a result of the heat denaturation of protein during EE 

processing, which made protein less soluble in acid. Such differences disappeared in alcohol-washed 

samples as a result of the strong denaturation power of alcohol. 

The solids dispersibility for acid-washed SPC directly related to PDI of the starting material. 

Alcohol-washed SPC had significantly lower solids dispersibility than acid-washed SPC, and they did not 

correlate with the initial PDI as a consequence of protein denaturation by alcohol. The same was true for 

protein dispersibility. SPC from acid washing had much higher emulsification capacity than that from the 

alcohol washing, because the alcohol-denatured protein did not disperse well in either water or oil phases. 

The emulsification capacity of acid-washed SPC from EE35 was similar to that of the white flakes despite 

its significantly lower protein content, and its emulsification capacity was significantly higher than that of 
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EE60. It is possible that with the higher degree of protein denaturation, the more hydrophobic regions 

were exposed, which might have contributed to a higher emulsification capacity. Alcohol-washed SPC 

showed an opposite trend, indicating that alcohol denaturation of protein is different from heat 

denaturation. The higher residual oil content in SPC from EE60 may also contribute in its lower 

emulsification capacity. 

The foaming properties of acid-washed and alcohol-washed SPC showed quite different patterns 

also. Under the same wash method, SPC from white flakes had a higher foaming speed, foaming capacity, 

and foam stability values than the SPC from EE samples. Acid-washed SPC from EE35 had significantly 

higher foaming speed, capacity, and stability values than that from EE60. However, alcohol-washed SPC 

from white flakes, EE60, and EE35 showed different trends compared with acid-washed products. For 

alcohol-washed SPC, product from EE35 had the lowest foaming speed, capacity, and foam stability. This 

also implies that alcohol and heat denature protein in different manners. 

SPI Preparation and functional properties of SPI. SPI yield, protein yield, and protein content 

were significantly different among SPI prepared from different materials (Table 3). SPI from samples with 

higher PDI values had higher yields and protein contents than those from lower-PDI materials. Since the 

total carbohydrates in SPI from white flakes and EE60 were similar (Table 3), the differences in protein 

contents were apparently partially due to the residual oil content in the SPI. For EE35, the higher total 

carbohydrates and total oil together contributed to the lower protein content in SPI compared with that 

from white flakes. Both SPI yield and protein yield showed a strong linear relationship with PDI of the 

raw materials: SPI yield (%) = 10.3 × PDI + 14.1, R2 = 0.99; protein yield (%) = 16.4 × PDI + 25.4, 
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R2=0.98. This shows that denaturation of protein strongly affects the amount of proteins that can be 

extracted into SPI. Although the protein content differences among SPI from white flakes and two EE 

meals were significant, the difference in SPI between the two EE meals was much smaller than that 

between white flakes and EE meals (Table 2).  

SPI from both EE60 and EE35 meals had solids and protein dispersibilities of 100%. The SPI 

from white flakes had slightly lower solids and protein dispersibilities, about 96 and 94% respectively. The 

difference might be due to a small portion of unstable proteins in white flakes that was recovered into SPI 

but became insoluble during SPI handling and testing, whereas the corresponding proteins in EE meals 

never had this chance because they endured a much harsher treatment earlier in EE process and went with 

the insoluble fractions during SPI preparation. 

Contrary to yield, SPI from two EE meals had significantly higher emulsification capacities than 

those from the white flakes. To explain this observation, the ratio of β-conglycinin to glycinin was 

determined by SDS-PAGE and densitometry analysis (Table 2). The ratio for SPI from white flakes was 

0.72, but the ratios were 0.57 for EE60 and 0.47 for EE35. Apparently, EE processing denatured relatively 

more β-conglycinin than glycinin, resulting in decreased β-conglycinin-to-glycinin ratio. The lower the 

PDI value (thus the harsher the EE processing), the lower was the ratio. This is reasonable since the 

denaturation temperature of β-conglycinin was lower than that of glycinin. For instance, in water solutions, 

denaturation temperatures were about 70 and 90°C for β-conglycinin and glycinin, as measured by DSC in 

our own research (Wang, H., L.A. Johnson, and T. Wang, unpublished data). Thus, the EE process resulted 

in a partial fractionation of β-conglycinin and glycinin during SPI preparation and increased the glycinin 
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fraction in the final SPI. The emulsification capacity of β-conglycinin was 1.5- to 4.0-fold higher than that 

of glycinin, as reported by Bian et al. (15), and 1.7- or 3.8-fold higher as reported by Rickert et al. (16); 

therefore, we expected to have a lower emulsification capacity for the SPI from EE meals. However, the 

emulsification capacity of SPI from EE35 was significantly higher than that from white flakes, which was 

contrary to the expected outcome based on the β-conglycinin and glycinin ratio change. One possible 

explanation may be that the soybean proteins in SPI recovered from heat-denatured materials experienced 

special conformational changes during EE processing such that the emulsification performance was 

altered. 

For the foaming properties, i.e., foaming speed and foaming capacity (Table 3), the differences 

were not significant. The differences for foam stability (K value) were minor, although they were 

statistically significant. 

Overall, although the SPI and acid- and alcohol-washed SPC produced from EE meals had lower 

protein content than their counterparts from white flakes, certain functional properties, such as 

emulsification capacity and dispersibility of acid-washed SPC, and emulsification capacity of SPI made 

from EE meals, were similar to, or higher than, those from white flakes. This indicates that certain soy 

protein products with good functional properties can be made from protein meals processed by EE. 
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Figure Captions: 

FIG. 1. Procedure for producing soy protein concentrate using the acid-wash method.  

FIG. 2. Procedure for producing soy protein concentrate using the alcohol-wash method. 

FIG. 3. Procedure for producing soy protein isolate. 
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FIG. 1. Procedure for producing soy protein concentrate using the acid-wash method.
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FIG. 2. Procedure for producing soy protein concentrate using the alcohol-wash method.
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FIG. 3. Procedure for producing soy protein isolate. 
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TABLE 1. 
Acid-washed and Alcohol-washed Soy Protein Concentrates (SPC) and Their Functionalities a 

Yield (%)  PC a  Dispersibility (%) EC a,b Foaming property Process/Starting 
material 

  SPC Protein (%) Solids Protein  FS a,b FC a,b K value b 
Acid-washed SPC          

White flakes 72.35 90.93 68.28 38.38 53.72 132.54 0.32 1.45 0.00025 
EE60 78.45 95.16 53.86 38.35 47.51 99.00 0.09 0.76 0.00148 
EE35 78.16 96.03 60.38 18.88 17.42 127.75 0.20 1.36 0.00097 

Alcohol-washed SPC          
White flakes 78.89 98.04 67.53 8.31 5.70 25.76 0.25 1.50 0.00067 
EE60 83.98 98.65 52.16 16.08 6.26 19.77 0.21 1.28 0.00086 
EE35 81.49 97.56 58.83 12.15 3.93 18.14 0.06 0.55 0.00288 

P and LSD value          
Wash <0.0001 <0.00001 0.0031 <0.0001 <0.0001 <0.0001 0.0054 0.0332 <0.0001 
Sample <0.0001 0.0106 <0.0001 <0.0001 0.0008 0.003 <0.0001 <0.0001 <0.0001 
Interaction 0.0001 0.0084 0.5322 <0.0001 0.0009 0.0107 <0.0001 <0.0001 <0.0001 
LSD0.05 for sample  0.56 1.61 0.97 1.35 3.02 9.93 0.03 0.06 0.0002 
LSD0.05 for wash 0.45 1.32 0.79 1.10 2.47 8.11 0.03 0.05 0.0002 

 
a PC, protein content; EC, emulsification capacity, FS, foaming speed; FC, foaming capacity; EE60, soy 
flour processed by extruding-expelling and having a protein dispersibility index (PDI) of ~60; EE35, same 
as EE60 except PDI was ~35. 
b EC: g soybean oil/25 ml 2% slurry; FS: ml/sec; FC: ml/ml; K value: ml-1·sec-1. 
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TABLE 2.  
Compositions of Starting Materials, Alcohol-washed SPC, and SPI  

Product 
 

Protein 
(%) 

Total carbohydrate 
(%) 

Crude fat 
(%) 

Crude 
fiber (%) 

Ratio of β-conglycinin 
to glycinin  

Starting materials      
White flakes 54.34 25.79 3.07 3.94 -a 
EE60 44.40 23.26 16.73 3.96 - 
EE35 49.14 24.01 9.84 4.16 - 

Alcohol-washed SPC      
White flakes 67.53 16.17 3.40 4.39 - 
EE60 52.16 15.78 22.23 5.17 - 
EE35 58.83 17.02 11.96 5.54 - 
P value <0.0001 0.81 <0.0001 0.008 - 
LSD0.05  1.59 4.72 0.53 0.58 - 

SPI      
White flakes 87.53 5.07 3.24 <0.02 0.72 
EE60 80.82 5.08 11.69 <0.02 0.57 
EE35 79.61 7.61 9.21 <0.02 0.47 
P value 0.002 0.80 0.002 - - 
LSD0.05  3.33 1.20 3.31 - - 

a Not determined. For abbreviations see Table 1.
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TABLE 3. 
SPI Prepared from Different Materials and Their Functionalities a. 

Yield (%)  PC Dispersibility (%) Foaming property Product 
 SPI Protein (%) Solids Protein 

EC 
 FS a,b FC a,b K value b 

White flakes 45.48 73.27 87.53 95.69 94.07 248.42 0.63 1.69 0.00011 
EE60 33.45 60.89 80.82 100.00 100.00 272.28 0.62 1.67 0.00014 
EE35 24.98 40.46 79.61 100.00 100.00 316.42 0.63 1.67 0.00013 
P value <0.0001 <0.0001 0.002 0.035 <0.0001 0.021 0.94 0.064 0.001 
LSD0.05  0.87 2.78 3.32 3.19 0.75 42.7 0.08 0.02 1.00E-5 

a For abbreviations and units see Table 1. 
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ABSTRACT: The effects of hydrothermal cooking (HTC) at alkaline conditions on refunctionalization of 

heat-denatured protein of extruded-expelled (EE) soy meals and on preparation of soy protein isolate (SPI) 

from EE soy meal were determined. Two HTC setups, flashing-out HTC (without holding period) and 

HTC with holding for 42 s at 154°C, were evaluated. Alkali (NaOH) addition dramatically enhanced the 

refunctionalization of EE meal having an initial protein dispersibility index of 35. The more alkali added, 

the more refunctionalization occurred. Extensive refunctionalization was achieved at 0.6 mmol alkali/g EE 

meal and additional improvement was small with more alkali. For both HTC setups, the solids and protein 

yields of SPI from alkali-HTC treated EE meals were significantly higher than those from HTC without 

alkali addition. The yield of protein as SPI increased from 40 to 82% after HTC treatment at 0.6 mmol 

alkali/g EE meal compared with no alkali addition. The emulsification capacities of SPI after alkali-HTC 

were similar to those from HTC without alkali. SPI from holding-tube HTC-treated EE meals had higher 

emulsification capacities than those prepared by flashing-out HTC. 

 

KEY WORDS: Alkali hydrothermal cooking, emulsification capacity, extruded-expelled soybean meal, 

foaming properties, functional properties, protein, protein dispersibility, refunctionalization, soy protein, 

soybean meal.
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The use of soy protein ingredients by the food industry is increasing rapidly owing to health benefits, low 

cost, and versatile functionalities. Most soy protein products are manufactured from highly soluble 

(flash-desolventized) hexane-defatted soybean meal. Solvent extraction is capital intensive and unsuitable 

for processing small amounts of identity-preserved soybeans. Extrusion-expelling (EE) is a promising 

technique that presses the oil from the whole or cracked seeds and is suitable for processing small lots of 

identity-preserved seeds (1, 2). EE differs from traditional screw pressing in that a dry extruder replaces 

steam-heated stack cookers or rotary dryers. Compared with solvent-extracted white flake, EE protein 

meals that are processed into EE soy flour having much more heat exposure and protein denaturation 

[15-60 vs. 80-90 protein dispersibility index (PDI)], contain significantly more residual oil (6-12% vs. 

~1%), having lower levels of heat-sensitive antinutritional factors (trypsin inhibitors) and enzymes (such 

as lipoxygenase), and possess a pleasant nutty flavor. Typical EE meal contains 50% protein and 6% oil, 

and 90% of its trypsin inhibitors are inactivated (1). The use of protein ingredients prepared from EE meal 

in foods, however, is limited by their poor functional properties and low yields of soy protein isolate (SPI), 

a direct consequence of heat denaturation of the protein. 

Our previous work showed that SPI could be prepared from EE meals; however, the yields were 

low (the SPI yield and protein yield were only 25 and 40%, respectively) (6). Inspired by the work of 

Johnson (3) and Wang and Johnson (4), we demonstrated hydrothermal cooking (HTC) could be used to  

refunctionalize heat-denatured proteins of EE meals (5). We also demonstrated the feasibility of using 

HTC as a pretreatment in extracting soy protein products, such as soy protein concentrate (SPC) and 

isolate (SPI), from EE meals; the yields of SPI and protein were 36 and 53%, respectively. 



www.manaraa.com

  101

We have observed that the viscosity of a slurry of alcohol-washed SPC, which contains highly 

denatured protein as a consequence of exposure to alcohol, dramatically increased with mild heating and 

alkali addition. We also observed similar behavior with EE meals. We hypothesized that the combination 

of alkali, high shear, and high temperature achieved during HTC can be used to refunctionalize EE 

soybean meal. The objective of this work was to determine the effects of different alkali addition on the 

major functional properties of EE meal, as well as SPI yield and properties prepared from treated EE meal. 

 

EXPERIMENTAL PROCEDURES 

EE meal and alkali treatments. Typical EE meal, EE35 (with PDI of 35), was prepared from cracked and 

dehulled commodity soybeans (Stine Seed Co., Adel, IA) by using processing conditions previously 

described (6). A slurry containing 20% meal solids was prepared by mixing with a BiomixerTM handheld 

mixer (ESGE Ltd., Mettlen, Switzerland). Alkali (2 N NaOH) was added at 0.2, 0.4, 0.6, and 0.8 mmol/g 

EE meal (dry-weight basis) levels immediately before being pumped to a Stephan mill (Type MC15, A 

Stephan u. Söhne GmbH & Co., Hameln, Germany) for grinding and mixing. 

HTC setup and treatment conditions. A Moyno pump (2MI type SSQ; Robin and Myers, Inc., 

Springfield, OH) was connected to a steam infusion hydroheater (size 300 type B; Hydrothermal Co., 

Milwaukee, WI) where culinary-grade steam (~90 psi, 6.5 kg/cm2) was infused into the protein slurry to 

achieve instantaneous heating and high shear. The slurry feed rate was maintained at 1.5 kg/min for all 

treatments. Two HTC setups were used (Fig. 1). For one HTC treatment, the heated slurry was merely 

flashed out and was designated as flashing-out HTC. In this case, the cooked protein slurry was discharged 
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directly into a flash chamber at atmospheric pressure without any holding tube or backpressure after the 

steam infusion. The slurry temperature was about 104°C for 2 s. For a more severe heat treatment, we 

placed a holding tube after the hydroheater. The holding tube was 4.48 m long (2.54 cm i.d. and 2.66 cm 

o.d.), and provided 42-s residence time (5). A backpressure valve, after which the sample passed to the 

flash tank, was used to control the steam pressure and thus temperature. The cooking temperature was 

maintained at 154±1°C and monitored by using thermocouples and a data logger. This treatment was 

designated as holding-tube HTC. These conditions were selected based on our previous work (5). The 

cooked slurry exiting the flash chamber was immediately cooled to <40°C by discharging into a 

stainless-steel beaker in an ice bath. All treated samples were refrigerated at 5°C until being analyzed. 

Only flashing-out HTC was used to evaluate the effects of alkali addition on the 

refunctionalization of EE meals because of the availability of data on flashing-out refunctionalization of 

EE meals in our previous work for comparison (5). The alkali-treated samples were neutralized to pH 7 

before determining functionality. Both flashing-out and holding-tube HTC with 0.2 and 0.6 mmol alkali/g 

meal were used to produce refunctionalized materials for SPI preparation. 

SPI preparation. SPI was prepared using methods described by Lusas and Rhee (7) with minor 

modifications (Fig. 2). Protein extraction was carried out at the pH obtained after HTC with 0.0, 0.2 and 

0.6 mmol alkali/g meal addition, diluting to 1:10 solids/water ratio and stirring for 30 min at 60°C as in 

our previous work (6). The pH values of the protein slurries under various conditions are shown in Table 1. 

Characterization of functional properties. All compositional data are reported on dry-weight basis. 

Moisture was determined by using oven-drying at 130°C for 3 h. Protein content was measured by using 
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AOAC method 993.13 (8) with a Rapid N III analyzer (Elementar Analysesysteme GmbH, Germany) and 

6.25 as the N conversion factor. Solids and protein dispersibilities were the dry matter and protein, 

respectively, in the supernatant relative to the total dry and protein matter after centrifuging a 10% 

suspension at 1050 × g at 5°C for 5 min (3). 

Emulsification capacity was measured by a method based on Swift et al. (9) where 25 ml of a 2% 

solids dispersion was placed into a 400-mL plastic beaker, and a hand-held BiomixerTM was used at high 

speed (1,200 rpm) to emulsify the protein suspension with a commercially refined soybean oil, which was 

introduced at a rate of about 0.5 g/s. Emulsification capacity was the amount of oil that caused phase 

inversion. The inversion point was detected by observing a sudden separation of oil and water phases, an 

abrupt decline in viscosity, and a change in pitch of the noise from the mixer. A fat-soluble dye, Red Fat 

7B, was added to the oil at about 4 ppm to make the end point more easily observed. 

To quantify foaming properties, a foaming column made by fusing a fritted ceramic disk into a 

graduated glass column was used (10). Nitrogen gas was purged at 16.7 mL/s to produce 300 mL of foam 

from 100 mL of 1% solids sample suspension. Three measurements were recorded: time to produce 300 

mL of foam (tf, in s), volume of sample suspension incorporated into foam at the end of the foaming period 

(Vmax, in mL), and time used for one-half of the foamed suspension to drain back (t1/2, in s). From these 

measurements, three foaming parameters were calculated: foaming capacity (FC) = 300/(16.7·tf), which 

was expressed as mL of foam formed per mL of N2 purged; K value = 1/(Vmax· t1/2), in unit of 1/(mL·s), 

which was used to describe foaming stability (higher value indicates lower stability); and foaming rate, Vi 

= Vmax/tf, in unit of mL/s, i.e., the rate of liquid incorporation into foam. 
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SDS-PAGE. SDS-PAGE was performed by using a method similar to that of Jung et al. (11). Soy 

protein samples and standards (glycinin and β-conglycinin, provided by P. Murphy,, Department of Food 

Science and Human Nutrition, Iowa State University) were dissolved in a 2× sample buffer (125 mM 

THAM at pH 6.8, 0.2% SDS, 20% glycerol, 5.0 M urea, and 0.01% bromophenol blue) to achieve 1 

mg/mL protein concentration. Storage and resolve gels contained 4 and 13% polyacrylamide, respectively. 

The loading volumes for samples and standards were 5 and 15 μL, respectively. Electrophoresis was 

conducted at 200 V for 45 min by using a Mini-PROTEIN® 3 Cell electrophoresis device (Bio-Rad 

Laboratories, Inc., Hercules, CA). Gels were stained for 1 h with a solution of methanol/acetic acid/water 

(50:10:18, by vol) and 0.22% Coomassie blue and destained for 4-5 h in methanol/acetic acid/water 

(50:10:40 by vol) solution. After washing with water, the gels were packed and dried overnight in a fume 

hood. 

Experimental design and data analysis. A two-factor factorial design was used to evaluate the 

effects of the two HTC setups (flashing-out HTC and holding-tube HTC) at three alkali addition levels (0, 

0.2, and 0.6 mmol alkali/g meal) on protein refunctionalization and SPI preparation. Each treatment was 

replicated two times. All SPI preparations and functional property measurements were performed in 

triplicate. Statistical analysis was performed using General Linear Model procedures of SAS 8.02 (12). 

 

RESULTS AND DISCUSSION 

pH of protein dispersion at different alkali additions. To understand pH effects, all pH values were 

measured at the same solids concentration (1:10 solids/water ratio or 9.1% dry solids) at 25 and 60°C after 
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stirring for 30 min as was used for extracting SPI (Table 1). After HTC, the pH dropped about 0.4 units 

compared to those without HTC treatment. The reduction in pH probably occurs because alkali-HTC 

dispersed or dissolved some of the heat-denatured protein, exposing more ionizable amino acid side chains 

of the protein to the aqueous environment, thus increasing the buffering capacity of the protein. 

One potential concern of alkali HTC is the high pH environment and possible protein degradation. 

It was reported that at pH >9, cystine could be degraded to form dehydroalanine, which may further react 

with lysine to produce lysinoalanine, whose toxicological property is not yet fully understood (13, 14). 

Kidney cell enlargement was observed in rats due to lysinoalanine, but at the consumption dose of 1.5 

mg/kg of body weight per day, no adverse effect was observed. When free lysinoalanine was fed to quail, 

mice, hamsters, rabbits, dogs, and monkeys, no kidney effects were observed (14). Research has so far 

failed to provide a definitive conclusion on its toxicity. Lysinoalanine is present in most proteinaceous 

foods or ingredients, including heated milk, cooked chicken, simulated cheese, cooked egg whites, 

hydrolyzed vegetable protein, milk powder, and casein (14). 

Effect of alkali concentration on HTC refunctionalization of EE meals. Alkali-HTC improved 

solids and protein dispersibilities, emulsification capacity and foaming stability (lower K value indicates 

better stability) of EE35 meals over the control that was not HTC treated nor exposed to alkali (Fig. 3). 

Maximum solids and protein dispersibilities were achieved by carrying out alkali-HTC at 0.6 mmol 

alkali/g meal. Protein dispersibility may have accounted for most of the solids dispersibility since the two 

curves and the relative improvement were similar, and the other components may not have responded to 

alkali treatment. 
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Although there were some significant differences in emulsification capacities among different 

alkali concentrations, the differences were probably not sufficient to be practically significant. There were 

no differences in foaming capacities among different alkali concentrations during HTC treatment; however, 

these foaming capacities were lower than that of EE meal without any treatment (Fig. 3), and we could not 

explain this outcome. For foaming stability, the maximum effect was achieved at the alkali addition of 0.6 

mmol/g meal, where K value was the lowest. 

Preparation of SPI after alkali HTC refunctionalization of EE meal. For both flashing-out and 

holding-tube HTC, alkali addition significantly improved the solids and protein yields of SPI compared 

with HTC without alkali (Fig. 4). The improvements were more significant when compared to the initial 

meal without HTC. Higher alkali addition resulted in higher SPI yields. The protein concentrations in SPI 

prepared from flashing-out HTC and holding-tube HTC ranged 75-76% without significant differences 

among them. Although these protein concentrations were significantly lower than for the SPI from EE 

meals without HTC treatment (80%), the difference was only about 4-5%. Because these SPI products do 

not meet the protein concentration minimum requirement of 90% protein, they cannot be marketed as “soy 

isolate”. We believe that the lower protein purity (than SPI requires) was the result of the presence of 

significant levels of residual oils and carbohydrates in SPI, similar to the SPI prepared from EE meals 

without HTC treatment (6). 

There were no statistically significant differences in SPI yield, protein yield and protein content 

for the two HTC setups (Table 2). The maximum SPI protein yield (82%) was achieved with holding-tube 

HTC at 0.6 mmol alkali/g meal. This protein yield was more than twice as much as from the untreated EE 
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meal (~40%) and 1.7 times more than from HTC-treated EE meals without alkali (~48%). 

Functionalities of SPI produced from alkali-HTC refunctionalized EE flour. HTC setup had a 

significant effect on emulsification capacity (Table 2). SPI from holding-tube HTC had higher 

emulsification capacity than did SPI from flashing-out HTC, and the difference was about 100 g oil/g SPI, 

which was 25% higher than flashing-out HTC. The level of alkali addition had little effect on 

emulsification capacity within the flashing-out HTC or the holding-tube HTC treatment groups (Fig. 5). 

The emulsification capacities of SPI from holding-tube alkali-HTC-treated EE meal were lower than that 

from EE meal without any treatment (633 g oil/g). One possible explanation is that SPI recovered from the 

original EE meal (with very low yield) consisted of mainly native proteins, thus gave high emulsification 

capacity. HTC treatment had most likely denatured all the remaining native proteins. It was not clear why 

SPI from holding-tube HTC had much higher emulsification capacity than did the SPI prepared by 

flashing-out HTC under both neutral and alkaline conditions. 

We speculate that since EE meals contain both native and heat-denatured proteins, HTC decreased 

the emulsification capacity of the native proteins and at the same time increased the emulsification 

capacity of the denatured protein by disintegrating the large heat-denatured protein aggregates. The overall 

emulsification capacity of SPI was the combination of the two opposing actions. Compared with 

flashing-out HTC, holding-tube HTC exposed the protein to a much higher temperature for a longer period. 

This may have been more effective in breaking up the aggregates and thereby resulting in a protein 

product with an improved balance of hydrophobic and hydrophilic surfaces. Although the emulsification 

capacity was the same for SPI from HTC without alkali, alkali-HTC resulted in much higher SPI yield. 
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HTC setup and alkali addition significantly affected both foaming capacity and foaming stability 

(K value) of the SPI (Table 2). The more alkali was added, the higher was the foaming capacity, especially 

for holding-tube HTC. The foaming capacities of SPI prepared from HTC-treated EE meals were higher 

than that for the SPI from original EE meal. Holding-tube HTC increased foaming capacity more than 

flashing-out HTC at the same alkali concentration, but the increases were not great (Fig. 5). Alkali addition 

of 0.2 mmol/g meal significantly decreased foaming stability of SPI compared with that of original EE 

meals, but when alkali addition was increased to 0.6 mmol/g meal, foaming stability was improved and 

was similar to SPI from original EE meal (Fig. 5). Since the foaming properties are related to the surface 

behavior of the proteins at the interface between solution and air of the foam bubbles, the exact 

mechanism is difficult to understand except that alkali-HTC probably changed the conformations of the 

soy protein molecules and resulted in modified surface properties. It is worth noting that foaming stability 

of SPI from HTC-treated EE meal without alkali decreased (K value increased) compared with that of SPI 

from original EE meal, similar to the trend in emulsification capacity (Figs. 5 A and 5 C). This may be 

explained by the denaturation of the residual native protein in the original EE meal during HTC without 

alkali treatment. 

Characterization of SPI by SDS-PAGE. The initial objective in determining the SDS-PAGE 

profile of the SPI was to see whether protein decomposition or hydrolysis occurred during alkali-HTC. No 

major peptide decomposition was found in SDS-PAGE profiles (Fig. 6). The difference in protein band 

density of SPI between flashing-out and holding-tube HTC at the same alkali concentration was not great. 

Alkali-HTC treatment decreased the band densities of major protein subunits. At higher alkali addition 
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(especially 0.6 mmol alkali/g meal), the subunit bands became lighter and at the same time, a darker 

residual band remained on the top of the gel, indicating more protein was not dissolved even in the 

presence of strong denaturation agents (SDS, urea) and reducing agent (2-mercaptoethanol). The 

accumulation of proteins at the gel top suggested that strong interactions between protein and protein, or 

protein and non-protein components (possibly carbohydrates) were formed. These interactions, however, 

did not affect the extraction of the protein or protein functionalities. There were considerable non-protein 

components, including carbohydrates, in SPI from EE meals. The SPI prepared from original EE35 meal 

contained 80% protein, 8% carbohydrates (by phenol-sulfuric acid method), 9% crude fat (by acid 

hydrolysis method), and no crude fiber (6). Typical SPI from alkali-HTC contained 76% protein. 

Overall, alkali addition enhanced the refunctionalization of EE meal and dramatically increased 

the protein yield of SPI, which had similar or improved functionalities compared to SPI from HTC without 

alkali addition. Holding-tube HTC resulted in SPI with better functional properties than flashing-out HTC. 
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Figure captions: 

FIG. 1. Schematic diagram of the two HTC setups (flashing-out and holding-tube HTC). 

FIG. 2. Procedure for producing soy protein isolate (SPI) from alkali-HTC-treated extruded-expelled (EE) 

soybean meal. 

FIG. 3. Effects of alkali (NaOH) addition and flashing-out-HTC on the major functional properties [solids 

dispersibility (A), protein dispersibility (B), emulsification capacity (C), foaming capacity (D), and K 

value (E)] of EE35 meals, which has a protein dispersibility index of 35. Points with the same letters 

within the same chart are not significantly different (P =0.05). 

FIG. 4. Comparisons of solids yields, protein yields, and protein purities of SPI from flashing-out (A) and 

holding-tube (B) HTC-treated EE meals at different alkali (NaOH) concentrations. Points with the same 

letters within and across charts are not significantly different (P = 0.05). 

FIG. 5. Effects of alkali-HTC on emulsification capacities (A), foaming capacities (B), and foaming 

stabilities (C) of SPI. Points with the same letters within the same chart are not significantly different (P = 

0.05). 

FIG. 6. SDS-PAGE profiles of SPI from alkali-HTC treatments (α′, α, and β are the major subunits of 

β–conglycinin, acidic (A), and basic (B) subunits are the major components of glycinin). 



www.manaraa.com

  113

TABLE 1. 
pH of Protein Slurries (9.1% solids) at Different Alkali Concentrations before and after Hydrothermal 
Cooking (HTC) 

Alkali concentration (mmol/g meal) Location of alkali addition 
0 0.2 0.6 

Before HTC, 25°C 6.7 9.4 11.4 
Before HTC, 60°C 6.4 8.3 10.0 
After HTC, 60°C 6.4 7.9 9.6 
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TABLE 2. 
P-Values for Treatment Effects on SPI Preparation and Major Functional Propertiesa  

Treatment d.f. SPI Yield SPI Protein 
Content 

SPI Protein 
Yield 

ECa FCa K Valuea 

HTC setup 1 0.257 0.659 0.480 <0.0001 0.0027 0.016 
Alkali addition  2 <0.0001 0.074 <0.0001 0.620 0.0003 0.0005 
HTC*alkali addition 
(interaction) 

2 <0.0001 0.761 0.0002 0.694 0.378 0.038 

a EC, emulsification capacity; FC, foaming capacity; K Value, foaming stability; SPI, soy protein isolate. 
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FIG. 1. Schematic diagram of two HTC setups (flashing-out and holding-tube HTC).
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Fig. 2. Procedure for producing soy protein isolate (SPI) from alkali-HTC-treated extruded-expelled (EE) 
soy meal.
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FIG. 3. Effects of alkali (NaOH) addition and flashing-out-HTC on the major functional properties [solids 
dispersibility (A), protein dispersibility (B), emulsification capacity (C), foaming capacity (D), and K 
value (E)] of EE35 meals, which has a protein dispersibility index of 35. Points with the same letters 
within the same chart are not significantly different (P = 0.05).
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FIG. 4. Comparisons of solids yields, protein yields, and protein purities of SPI from flashing-out (A) and 
holding-tube (B) HTC-treated EE meals at different alkali (NaOH) concentrations. Points with the same 
letters within and across charts are not significantly different (P = 0.05).
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FIG. 5. Effects of alkali-HTC on emulsification capacities (A), foaming capacities (B), and foaming 
stabilities (C) of SPI. Points with the same letters within the same chart are not significantly different (P = 
0.05). 
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FIG. 6. SDS-PAGE profiles of SPI from alkali-HTC treatments (α′, α, and β are the major subunits of 
β–conglycinin, acidic (A), and basic (B) subunits are the major components of glycinin). 
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ABSTRACT: Using extrusion heat-denatured soy protein isolate (SPI) as a model, the mechanism for 

refunctionalizing of heat-denatured soy protein by hydrothermal cooking (HTC) with alkali was studied. 

Heating causes soluble protein to form insoluble protein aggregates. Treating heat-denatured soy protein 

with alkali dispersion without HTC increased solubility and viscosity by dissolution of a portion of the 

protein aggregates and swelling of the large protein particles. This suspension was more stable to solids 

separation than that of original untreated heat-denatured protein, but it was less stable than the protein 

suspensions that were refunctionalized by water dispersion with HTC or alkali dispersion with HTC. 

Water dispersion with HTC disrupted the large aggregates into smaller aggregates. The viscosity and total 

number of particles in the system also increased dramatically. The most significant effect was achieved 

with alkali dispersion (0.6 mmol NaOH/g) with HTC. The solubility increased from 4 to about 80% at 

neutral pH, and viscosity (at zero shear rate) increased by more than 1,000 times compared with extrusion 

heat-denatured SPI. Alkali-dispersion (0.6 mmol NaOH/g) with HTC dissolved most of the protein 

particles, decreasing the particle number by a factor of almost 100. The suspensions of heat-denatured soy 

protein became much more stable after HTC as shown by particle settling velocities. The most effective 

treatment was alkali dispersion (0.6 mmol NaOH/g) with HTC, followed by water dispersion with HTC. 

The soy protein slurry refunctionalized by alkali dispersion (0.6 mmol NaOH/g) with HTC formed soft, 

translucent gels. 

 

KEY WORDS: Alkali dispersion, extrusion, heat-denatured protein, hydrothermal cooking, particle-size 

distribution, protein solubility profile, settling velocity, soy protein isolate, Stokes’ law, viscosity.
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Our previous work showed that hydrothermal cooking (HTC), especially when the protein was dispersed 

in alkali (0.2-0.8 mmol/g meal) prior to HTC, improved the functional properties, such as solids 

dispersibility, emulsification capacity and foaming properties, of extruded-expelled (EE) soybean protein 

meals (1, 2). The protein yield of soy protein isolate (SPI) after alkali dispersion with HTC (alkaline HTC) 

of EE soybean meal was improved by twofold (from 40 to 81%) compared with the original meal, whereas 

the protein yield after water dispersion with HTC (HTC without alkali) was 53%. We hypothesized that 

alkali dispersion with HTC increases the extractability of the protein and the stability of the resulting 

protein suspension (as SPI) by dissolving the broken-up aggregates pieces. The objective of the present 

work was to determine the changes of protein solubility or dispersibility, particle size of the denatured 

protein aggregates, viscosity, density differences between the dispersed and continuous phases etc, after 

various HTC treatments, in order to reveal the mechanism during HTC. To eliminate interference from 

nonprotein components in EE meal, such as fiber and residual oil, we chose native SPI (with protein 

content > 90%) as a model to study the mechanism of protein refunctionalization and improvement in SPI 

yield by alkali dispersion with HTC. 

 

EXPERIMENTAL PROCEDURES 

Materials. Native SPI (spray-dried without other intentional heat denaturation or additives) prepared at the 

Center for Crops Utilization Research, Iowa State University, was used as purified soy protein. A 

co-rotating laboratory-scale Leistritz Micro-18 twin-screw extruder (American Leistritz Corp., 

Sommerville, NJ), with the screw having a low shear configuration (18 mm diameter, 30 L/D ratio), was 
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used to denature the protein in SPI. To make SPI extrudable, additional water was injected into the middle 

of the barrel. The maximum amount of water that could be added into native SPI before extrusion was 

only about 20%, which was less than required for trouble-free extrusion. The water feed rate was about 14 

g/min. Screw rotation speed was set at 200 rpm. Moistened SPI was fed with a metering feeder (Accurate 

Inc., Whitewater, WI) at about 4 g/min. The internal temperature profile was 60, 90, 130, 130, and 130˚C 

from the feed inlet to the die outlet. The extrudates were dried at ambient temperature for 2 d and then 

ground with a Magic Mill III Plus high-speed flour mill (Magic Mill, SSI Division., Salt Lake City, UT). 

The flour was then passed through a 40-mesh sieve and kept at ambient temperature to equilibrate the 

moisture content (5.1%). The protein dispersibility index (PDI) of the heat-denatured SPI was 10.3 as 

measured by NP Analytical Laboratories (St Louis, MO) by using AOCS official Method Ba 10-65 (3). 

Treatments. Five treatments (Fig. 1), identified as “water-dispersed heat-denatured SPI without 

HTC”, “alkali-dispersed (0.2 mmol NaOH/g) heat-denatured SPI without HTC”, “alkali-dispersed (0.6 

mmol NaOH/g) heat-denatured SPI without HTC”, “water-dispersed heat-denatured SPI with HTC”, and 

“alkali-dispersed (0.6 mmol NaOH/g) heat-denatured SPI with HTC” were used. Water-dispersed 

heat-denatured SPI without HTC was SPI after extrusion cooking to heat-denature the protein and 

dispersion in water at 10% (db: dry basis). Alkali-dispersed (0.2 mmol NaOH/g) heat-denatured SPI 

without HTC was prepared by dispersing extrusion heat-denatured SPI as a 10% dry matter suspension, 

adjusting the pH to 8.5 with about 0.2 mmol NaOH/g SPI, and stirring at 60˚C for 30 min as in 

conventional SPI extraction (4). Alkali-dispersed (0.6 mmol NaOH/g) heat-denatured SPI without HTC 

was prepared following the same procedure as alkali-dispersed (0.2 mmol NaOH/g) heat-denatured SPI 
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without HTC, except more alkali (0.6 mmol NaOH/g SPI) was added. This trial was designed to determine 

the effect of alkali since the same amount of alkali was used as in alkali-dispersed (0.6 mmol NaOH/g) 

heat-denatured SPI with HTC. Water-dispersed heat-denatured SPI with HTC had HTC carried out on 

slurries of extrusion heat-denatured SPI without alkali addition. Alkali-dispersed (0.6 mmol NaOH/g) 

heat-denatured SPI with HTC was treated the same as water-dispersed heat-denatured SPI with HTC, 

except 0.6 mmol NaOH/g SPI was added before HTC. 

For all HTC treatments, a Moyno pump (2MI type SSQ; Robin and Myers, Inc., Springfield, OH) 

was connected with a hydroheater (size 300 type B; Hydrothermal Co., Milwaukee, WI) where 

culinary-grade steam (~90 psi pressure, 6.5 kg/cm2) was infused to give the heat and shear treatment. The 

samples (20% slurry) were infused with steam in the hydroheater, then passed to a holding tube that 

provided 42-s residence time at 154ºC. The slurry was then released into the flash chamber. The cooking 

temperature was adjusted by a control valve located between the holding tube and the flash chamber; the 

temperature was monitored by a thermocouple (1). All HTC-treated SPI were cooled to ambient 

temperature, neutralized to pH 7, and stored at 5°C until analyzed. 

Sample analyses. The protein solubility profile was determined as the percentage of solublized 

protein in the supernatant of 1% (db) dispersions in a series of pH values (2.5-10.5) after centrifugation. 

The pH was adjusted to specific levels with 2 N HCl or 2 N NaOH. After stirring for 1 h, the pH values of 

the suspensions were adjusted again, stirred for an additional 15 min, and centrifuged at 10,000×g at 20ºC 

for 10 min. The protein content of the supernatant was determined by using the Biuret method (5) with 

BSA (Sigma, St. Louis, MO) as the standard. The initial protein content (N × 6.25) was determined by 
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using a Rapid N III analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). 

The particle-size distribution and mean diameter of the dispersed particles of protein aggregates 

were measured by using a Mastersizer particle analyzer (Malvern Instruments Inc., Lombard, IL). The 

viscosity profiles of 10% sample (db) dispersions were measured at 25ºC by using a HAAKE RheoStress 

viscometer RS150 (Gebrüder HAAKE GmbH, Karlsruhe, Germany). 

To be able to use Stokes’ Law to explain our stability observations, we estimated “density 

difference”, which is the difference between the density of dispersed particles and the density of the 

continuous phase. The method was derived from a centrifugation procedure, in which the density and mass 

of the supernatant under a series of centrifugation forces were measured and the data fitted with a linear 

model to extrapolate to an estimated density difference. 

Our initial trial showed that the number of protein aggregates changed dramatically after alkali 

dispersion with HTC (alkaline HTC). The protein slurry was diluted to 1% in 20% aqueous glycerin and 

treated with 0.1% Coomassie Brilliant Blue G-250 to stain the protein. The suspension was spread onto a 

microscopic slide in a thin layer, and the slide was observed microscopically. Images were captured with a 

Zeiss Axioplan-2 microscope system (Carl Zeiss, Inc., Thornwood, NY). A magnification of 20× was 

selected because the range of particle sizes was easily observed. The particles were counted in a fixed area 

as seen on a computer screen. Dark field microscopy was used to highlight the particles from the 

background. For each sample, three photos were randomly selected. The particle number report was the 

mean of the three counts. We assumed that the particles were uniformly distributed in the suspension, thus 

the particle number along any direction will be the same and the “particle number” may be used as a 
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parameter across different dimensions. A simple mathematical function was used to convert particle 

number from count per area to count per volume (Fig. 2), and the particle concentrations were expressed 

millions/mL in a 1% protein slurry (Table 1). 

Experimental design and data analysis. All treatments were completely randomized with three 

replications. Statistical analysis was performed using General Linear Model procedures of SAS 8.02 (6). 

 

RESULTS AND DISCUSSION 

Protein solubility profiles. All samples had U-shaped solubility curves and isoelectric points (pI) of about 

pH 4.5, which is typical for soy protein (Fig. 3). As expected, extrusion heat denaturation dramatically 

reduced the solubility of spray-dried SPI. At pH values of 6.5 and 10.5, the solubilities of heat-denatured 

SPI decreased from 44 to 3% and 74 to 9%, respectively, compared with spray-dried SPI. Alkali 

dispersion without HTC increased the solubility of extrusion heat-denatured SPI. When heat-denatured 

SPI was treated by alkali dispersion (0.2 mmol NaOH/g) without HTC, the solubility increased only 

slightly compared with water-dispersed heat-denatured SPI without HTC. When treated with more alkali 

[alkali dispersion (0.6 mmol NaOH/g) without HTC], solubility increased much more. For example, at pH 

6.5 the solubility of alkali-dispersed (0.6 mmol NaOH/g) heat-denatured SPI without HTC increased from 

12 to 37%. The increase in solubility suggests that, although the amount of alkali added was critical, mild 

heating (60˚C) in alkali for a prolonged time (30 min), as in traditional SPI preparation, was not sufficient 

to solublize or disperse the heat-denatured protein. This was especially true for the low alkali addition (0.2 

mmol NaOH/g SPI). 
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When treated with HTC at neutral pH (water dispersion with HTC), the solubility of 

heat-denatured SPI dramatically increased. For example, at pH 6.5, the solubility increased from 3 to 35%. 

Solubility was near that of spray-dried SPI without extrusion heat denaturation. The solubility steadily 

increased with increasing pH to 52% at pH 10.5 (water-dispersed with HTC). The solubility increase was 

greater in water-dispersed with HTC than that of alkali-dispersed (0.6 mmol NaOH/g) heat-denatured SPI 

without HTC, which increased only from 37 to 43%. Thus, when comparing the solubilities resulting from 

the various treatments, HTC without alkali can refunctionalize heat-denatured soy protein considerably. 

The most dramatic protein resolublization occurred with alkali dispersion (0.6 mmol NaOH/g) 

with HTC. At pH 6.5, the solubility soared from 4% of that of water-dispersed heat-denatured SPI without 

HTC, to 80%. The solubility remained nearly constant as pH increased. Solubility of the alkali-dispersed 

HTC material was much higher than that of spray-dried SPI. The solubility profile of spray-dried SPI 

(before extrusion) was between that of water-dispersion with HTC and alkali-dispersion with HTC. 

Spray-drying and subsequent storage may have reduced protein solubility. At pH 5.5, alkali-dispersed (0.6 

mmol NaOH/g) heat-denatured SPI without HTC had considerable solubility (about 28%) compared with 

SPI with other treatments (all below 6%). The reason is unknown. Apparently, high pH induced rapid 

solublization or dispersion of denatured SPI. 

Settling velocity. Many liquid foods are suspensions of solid particles in liquid; these suspensions 

are termed sols. Maintaining a uniform dispersion of solid particles in the liquid continuous phase is 

critical to product quality. Over time, the solid particles will settle as a result of gravity. Estimates of the 

mean settling velocity of the particles are indicators of how stable the liquid suspension or food 
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preparation will be during distribution and storage. Stokes’ law can be used to estimate settling velocity of 

dispersed particles. Several factors influence settling velocity, including the size of particles (diameter), 

the density differences between the particles (dispersed or discontinuous phase) and the liquid (continuous 

phase), and the viscosity of the medium (continuous phase). We calculated settling velocities of the 

dispersed protein aggregates after various treatments based on the estimates of the parameters in the 

Stokes’ law. 

The order of increasing mean particle diameters of the protein particles in the treated suspensions 

was as follows: water-dispersed heat-denatured SPI with HTC < alkali-dispersed (0.6 mmol NaOH/g) 

heat-denatured SPI with HTC < water-dispersed heat-denatured SPI without HTC < alkali-dispersed (0.2 

mmol NaOH/g) heat-denatured SPI without HTC < alkali-dispersed (0.6 mmol NaOH/g) heat-denatured 

SPI without HTC (Fig. 4). The mean particle diameter increased after alkali dispersing without HTC.  

The particle size distributions were normal on the log scale for all treatments except for 

water-dispersed heat-denatured SPI with HTC, which was a bi-normal distribution (Fig. 4). After 

treatment with alkali alone (alkali-dispersing without HTC), the peaks of protein particle distribution 

shifted to the right indicating larger size. More alkali addition (0.6 vs 0.2 mmol NaOH/g SPI) resulted 

larger particles (Fig. 4). Although alkali dispersion with mild heating may dissolve the small particles and 

partially dissolve the large particles of heat-denatured SPI, the effect of swelling may be more dominant. 

The net result was increased mean diameter of the dispersed particles. The more alkali was added, the 

more swelling there was, although more protein was also dissolved, as shown by the solubility data (Fig 

3). 
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Water-dispersed heat-denatured SPI with HTC caused a bi-normal distribution. One peak (at 

about 500 µm) appeared at the right side of the original heat-denatured SPI, the other (at 25 µm) showed 

up on the far left side. The peak at the right side suggests that while most of the large particles were 

disrupted into smaller particles by the high shear force, some resistant particles survived the treatment and 

swelled in the aqueous system even without alkali addition, because their mean diameters were about 500 

µm, larger than that of original heat-denatured SPI (345 µm). The peak at the far left side suggests the 

majority of disrupted aggregates had diameters around 25 µm. This observation supports our hypothesis 

that high shear during HTC disrupts the large aggregates of heat-denatured protein into smaller ones (2). 

Alkali-dispersed (0.6 mmol NaOH/g) heat-denatured SPI with HTC reduced the mean particle 

size compared to the particles of water-dispersed heat-denatured SPI without HTC. The small particles 

may have been dissolved and the large particles were disrupted and partially dissolved by the combination 

of alkali solublization and high shearing force during HTC. Although alkali dispersion (0.6 mmol 

NaOH/g) with HTC may cause protein aggregates to swell in the same fashion as alkali dispersion without 

HTC, the swollen particles must have been short-lived because the high shear force, high temperature, and 

alkali to which they were subjected during treatment also disrupted and solublized the particles. Therefore, 

the mean particle size was reduced. 

It should be noted that particle-size distribution and mean particle diameter were based on the 

remaining dispersed particles. The treatments changed not only the particle diameter or size distribution 

but also the total number of particles in ways such that the final products showed significantly different 

properties (Fig. 5). The protein particles in the slurry of heat-denatured SPI settled quickly, leaving a 
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nearly clear solution in the upper portion. After alkali dispersion without HTC, the two layers did not 

clearly separate and the particles were better dispersed, although there were visible precipitates in the 

slurry. This was probably a result of more protein in the solution as well as the swelling of the protein 

particles. After water dispersion with HTC, the dispersion had a distinctive white milky color and a 

homogenous viscous texture. The SPI suspension after alkali dispersion (0.6 mmol NaOH/g) with HTC 

formed translucent to transparent soft gels after neutralization (the print characters behind the gel are 

clearly visible in Fig. 5). These observations cannot be explained by mean particle size and size 

distribution alone. 

The number of particles must be quantified in order to address the significant differences in 

sample properties. The results of particle number concentration are shown in Table 1. Alkali dispersion 

without HTC increased the particle number compared to water-dispersed heat-denatured SPI, possibly 

because of partially dissolution and physical disruption of the aggregates. The most dramatic changes 

occurred after HTC. The particle number concentration (millions/mL of 1% slurry) increased 200-fold 

after water-dispersing with HTC, but decreased by almost 100-fold after alkali dispersion (0.6 mmol 

NaOH/g) with HTC compared with water-dispersed heat-denatured SPI without HTC. HTC disrupted 

particles, producing smaller ones, whereas alkali largely dissolved the proteins. The combination of alkali 

and shear at high temperature disrupted the aggregates and then dissolved the proteins more efficiently. 

The viscosity profiles of the protein slurries after different treatments are shown in Figure 6. All 

samples exhibited typical non-Newtonian shear-thinning. Many models can describe viscosity behaviors 

of pseudoplastic materials of this type, such as using the power law (Ostwald-de Waele), Carreau-Yasuda, 
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Cross, Ellis, Meter, and the like (7). Usually the more comprehensive and better-fitting the model is, the 

more independent parameters are required. A simple logarithmic conversion was performed to describe the 

relationship between viscosity and shear rate measured in our experiment (Fig. 7). All samples showed 

downward linear relationships between shear rates of 10 to 500 s-1 after log-log conversion. Even the 

slurry of water-dispersed heat-denatured SPI without HTC was a shear-thinning, non-Newtonian 

pseudoplastic suspension. The alkali-dispersed (0.2 mmol NaOH/g) heat-denatured SPI without HTC and 

alkali-dispersed (0.6 mmol NaOH/g) heat-denatured SPI without HTC, water-dispersed heat-denatured 

SPI with HTC, and alkali-dispersed (0.6 mmol NaOH/g) heat-denatured SPI with HTC exhibited almost 

perfect linear relationships (R2 = 0.9995, 0.9982, 0.9989, and 0.9984, respectively). Therefore, the 

power-law model was a good fit. 

After heat denaturation, the viscosity of spray-dried SPI dispersion decreased. Viscosities of all 

the HTC or alkali-dispersed heat-denatured SPI increased compared to untreated heat-denatured SPI. The 

viscosity of alkali-dispersed (0.2 mmol NaOH/g) heat-denatured SPI without HTC increased slightly. The 

increases were higher for the water-dispersed heat-denatured SPI with HTC and alkali-dispersed (0.6 

mmol NaOH/g) heat-denatured SPI without HTC, where the viscosities were near that of spray-dried SPI 

dispersions. The viscosity increase of alkali-dispersed (0.6 mmol NaOH/g) heat-denatured SPI with HTC 

was the greatest, followed by alkali-dispersed (0.6 mmol NaOH/g) heat-denatured SPI without HTC, 

water-dispersed heat-denatured SPI with HTC, and alkali-dispersed (0.2 mmol NaOH/g) heat-denatured 

SPI without HTC. Since the lines are above each other, there is little possibility that their relationship 

could change beyond the shear rate range used in the analysis. It is well known that the power law model 
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does not fit reality well at extreme shear rates (for example, zero and infinite shear rate). When a particle 

settles through a liquid phase under the force of gravity, there will be a near zero-shear rate. A viscosity 

value near zero-shear is needed for the Stokes’ law particle settling velocity calculation. We regarded the 

shear rate of 1 s-1 as sufficiently low to represent the value at zero-shear. A zero-shear rate viscosity was 

extrapolated based on power law prediction from Figure 7.  

The density difference in Stokes’ law is defined as the mean density of particles (dispersed phase) 

minus the density of the continuous phase (we used the density of the supernatant after centrifugation at 

15,000×g for 15 min as the estimate for the density of the continuous phase) at ambient conditions. 

Because settling particles can precipitate under centrifugation, the mean density of the settling particles at 

different centrifugal speeds (rpm) were calculated by using the following formula, assuming the sum of 

the volume of precipitate and supernatant after centrifugation equals to the volume before centrifugation: 

 =Average density of settling particles 

 mass of precipitate
=

volume of precipitate  

mass of precipitate 

–total volume of slurry before centrifugation volume of supernatant 
 

The density difference between dispersed particles and continuous phase is centrifugation 

speed-specific when using this formula. An approach was needed to derive the density difference under 

gravity alone. We found a near-linear relationship between centrifugal speed (rpm) and density difference 

for heat-denatured SPI. We assumed that the relationship between density difference and centrifugation 
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rpm is linear for our samples. Therefore, extrapolation was used to calculate the density difference at the 

centrifugal speed of zero (under gravity, when slurry is free to settle). Figure 8 shows one example of 

density difference calculation. When speed = 0, density difference = 0.059 kg/m3. 

The accuracy of this method depends on the clear separation of precipitate and the measurement 

of supernatant volume. Considerable errors, especially for the viscous samples, were observed. The errors 

were so significant that sometimes no linear relationship was observed for certain samples. Another 

problem which may compromise the result is the small density difference between hydrated protein and 

continuous phase, especially considering the fact that many water molecules will hydrate the dispersed 

protein or indispersible aggregates or be physically trapped inside the protein matrix. 

Nevertheless, this method did provide useful information. The approximations were acceptable on 

further consideration that the density difference in this experiment had smaller impact on the settling 

velocity calculation than other parameters, either because of less relative change or the low power in the 

formula. 

Stokes’s law (settling velocity) calculations.V = 2·g·d2·Δρ/(9·μ), where V = settling velocity of 

protein particles, unit m/s; g = gravitational constant, 9.81 m/s2; d = mean diameter of particles, m; Δρ = 

mean density difference between particles and water, kg/m3; μ = viscosity of the suspension, kg/(m·s) 

[note: 1 N·s/ m2=0.1 kg/(m·s)]. The number of days it takes for the particles to settle a distance of 10 cm 

were also calculated to compare the relative stabilities of the dispersions after different treatments. 

Tables 2 shows that water-dispersed heat-denatured SPI with HTC and alkali-dispersed (0.6 mmol 

NaOH/g) heat-denatured SPI with HTC had dramatically reduced the settling velocities of the protein 
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particles. The effect was achieved mostly by the increase in viscosity of the slurry. The settling velocity 

results generally agreed with observations of the dispersions. The particles of water-dispersed 

heat-denatured SPI without HTC settled most quickly, followed by particles in alkali-dispersed (0.2 mmol 

NaOH/g) heat-denatured SPI without HTC, water-dispersed heat-denatured SPI with HTC, and 

alkali-dispersed (0.6 mmol NaOH/g) heat-denatured SPI without HTC. The difference between 

alkali-dispersed (0.6 mmol NaOH/g) heat-denatured SPI without HTC and water-dispersed heat-denatured 

SPI with HTC may be too small to be significant. It is very important to emphasize that for the 

alkali-dispersed (0.6 mmol NaOH/g) heat-denatured SPI with HTC, not only a majority of the particles 

were solublized but also the solution formed soft translucent or transparent gels where few protein 

aggregates survived, thus no settling was observed. 

It’s worth noting that the viscosity term in Stokes’ equation is theoretically for the continuous 

phase or the medium. We used viscosity of the suspension for calculation, because it is difficult to define 

and justify a reasonable medium for all samples and treatments. Centrifugation could be used to remove 

the insoluble protein particles for measuring medium viscosity, but the speed to use was an unsettled 

question because of the different sizes of protein particles present in different samples. We assumed that 

the contribution of the dissolved protein to viscosity is much greater than the contribution of the insoluble 

protein particles; therefore our suspension viscosities may be a slight overestimation of the true medium. 

As a validation, the water-dispersed heat-denatured SPI without HTC had much lower viscosity than the 

rest of the samples (Table 2), and such low viscosity was primarily produced by the insoluble protein 

particles. 
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Although water dispersion with HTC considerably refunctionalized heat-denatured soy protein 

and alkali dispersion without HTC partially refunctionalized heat-denatured soy protein, their individual 

effects were less significant than the combination of HTC and alkali dispersion, in which HTC and alkali 

work synergistically to refunctionalize heat-denatured soy protein. These effects were achieved by 

disrupting the large particles by high shear and high temperature and by dissolving the disrupted protein 

particles with alkali. The majority of the particles were dissolved and a translucent gel was formed, 

making soy protein stable and functional. The solubility of refunctionalized soy protein increased 20-fold 

and the viscosity (at zero shear rate) was 1,000 times greater than that of extrusion heat-denatured SPI. 

 Another potential implication of alkaline refunctionalization of heat denatured soy protein is that the 

treated protein product may have improved protein digestibility and bioavailability, therefore, a 

high-quality protein may be produced by this processing technique. 
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TABLE 1. 
Particle Concentrations in SPI Slurries after Different Treatmentsa 

Without HTC  With HTC 

Treatment 

 
Water-dispersed 
heat-denatured 

SPI 

Alkali-dispersed 
(0.2 mmol 
NaOH/g) 

heat-denatured 
SPI 

Alkali-dispersed 
(0.6 mmol 
NaOH/g) 

heat-denatured SPI 

  
Water-dispersed 
heat-denatured 

SPI 

Alkali-dispersed 
(0.6 mmol 
NaOH/g) 

heat-denatured SPI 

Particle 
concentration 
in 1% slurry 
(million/ml) 

14.3 76.2 5.2  2920 0.2 

aSPI, soy protein isolate; HTC, hydrothermal cooking. 
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TABLE 2. 
Settling Properties when Using Linear Extrapolation to Calculate Density Differencea 

Treatment 
Mean particle 

diameter 
(10-6m) 

Viscosity 
μ(shear rate=0) 

(10-3 kg/ms) 

Density 
difference 
(kg/m-3) 

Settling 
velocity 

(10-9 m/s) 

Time to 
settle 10 cm 

(d) 
Water-dispersed heat-denatured SPI 

without HTC 
345 52.3 0.050 247 4.70 

Alkali-dispersed (0.2 mmol NaOH/g) 
heat-denatured SPI without HTC 

385 327 0.028 27.9 41.4 

Alkali-dispersed (0.6 mmol NaOH/g) 
heat-denatured SPI without HTC 

417 1480 0.021 5.5 211 

Water-dispersed heat-denatured SPI 
with HTC 

184 1300 0.103 5.8 198 

Alkali-dispersed (0.6 mmol NaOH/g) 
heat-denatured SPI with HTC 

227 72300 gel Gel gel 

aFor abbreviations see Table 1. 
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Figure Captions  

FIG. 1. Diagram of hydrothermal cooking (HTC) treatments for protein refunctionalization and analyses 

used to study the mechanism of the refunctionalization. 

FIG. 2. Schematic figure showing how particle concentration was calculated. 

FIG. 3. Protein solubilities of heat-denatured SPI after different treatments. 

FIG. 4. Particle-size distributions and volumetric mean diameters of heat-denatured SPI after different 

alkali and HTC treatments. Means followed by the same letters are not significantly different (P ≤ 0.05). 

FIG. 5. Photographs of 10% dispersions of heat-denatured SPI after different treatments. 

FIG. 6. Viscosity profiles of heat-denatured SPI after different treatments. 

FIG. 7. Viscosity and shear rate relationships of heat-denatured SPI after different treatments. 

FIG. 8. Estimation of density difference under gravity using centrifugation method.
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FIG. 1. Diagram of hydrothermal cooking (HTC) treatments for protein refunctionalization and analyses 
used to study the mechanism of the refunctionalization. 
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FIG. 2. Schematic figure showing how particle concentration was calculated. 
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FIG. 3. Protein solubilities of heat-denatured SPI after different treatments. 
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FIG. 4. Particle-size distributions and volumetric mean diameters of heat-denatured SPI after different 
alkali and HTC treatments. Means followed by the same letters are not significantly different (P ≤ 0.05). 
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FIG. 5. Photographs of 10% dispersions of heat-denatured SPI after different treatments. 
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FIG. 6. Viscosity profiles of heat-denatured SPI after different treatments. 



www.manaraa.com

  147

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.8 1.3 1.8 2.3 2.8

Log (Shear Rate, s-1)

Lo
g 

(v
is

co
si

ty
, c

P)

Water-dispersed spray-dried SPI

Water-dispersed denatured SPI w ithout HTC

Alkali-dispersed (0.2 mmole NaOH/g) denatured SPI w ithout HTC

Alkali-dispersed (0.6 mmole NaOH/g) denatured SPI w ithout HTC

Water-dispersed denatured SPI w ith HTC

Alkali-dispersed (0.6 mmole NaOH/g) denatured SPI w ith HTC
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GENERAL SUMMARY 

HTC with both setups (with-holding-tube and flash-out) significantly affected the major functionalities of 

EE protein meals. EE meals with lower PDI had greater improvement. When using the with-holding-tube 

setup at 154°C cooking temperature, most functional properties (especially solids and protein 

dispersibilities and emulsification capacity) improved by using short residence time (about 42 s). With 

longer cooking times, their functionalities tended to decrease but were still higher than those without HTC 

treatment. Only foaming capacity and stability of EE meal with PDI of 35 showed significant 

improvement. Flashing-out HTC had similar effects on refunctionalization of EE meals. For example, the 

solids dispersibility, protein dispersibility and emulsification capacity of EE meal with PDI of 35 were 

improved 2.0, 4.4 and 2.1 times after the flashing-out HTC treatment. 

Both acid-washed and alcohol-washed SPC prepared from EE meals had high yield but low 

protein purity, presumably due to the higher residual oil content in EE meals compared to white flakes. 

Alcohol-washed SPC had lower functionalities compared with acid-washed SPC. The SPI prepared from 

EE meals had lower yield and protein purity than SPI prepared from white flakes. The protein purity was 

about 80%, which cannot be classified as commercial SPI, but the SPI from EE meal with PDI of 35 had 

similar or better functionalities than that prepared from white flakes. SPI yield increased as PDI of the 

starting materials increased and the SPI from EE meals had higher glycinin to β-conglycinin ratio than SPI 

from white flakes indicating that the extent of heat-denaturation during EE processing directly impacted 

the properties and protein extractabilities of EE meals. EE meals are suitable for preparing SPC. 
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Preparation of an SPI-like protein product from EE meal is feasible. The relatively low yield may be offset 

by the additional value resulting from identity-preserved EE processing. 

Extraction of SPI after EE meal was refunctionalized by HTC at neutral pH had limited benefits; 

however, when alkali was added during HTC, refunctionalization was dramatically enhanced. 

Refunctionalzation increased with increasing alkali addition during HTC, but after adding 0.6 mmol 

alkali/g meal, the trend plateaued. When treated by HTC with alkali addition, the EE meal with PDI of 35 

had much higher protein yield than EE meal without any treatment or with HTC without alkali addition. 

The more alkali added, the higher the SPI protein yield achieved from refunctionalized EE meals. The 

highest SPI protein yield was obtained at with-holding-HTC with 0.6 mmol alkali/g meal, which was 82% 

of the protein, a two-fold increase from that of the original EE meal, which was 40%. 

The more alkali used, the higher foaming capacity and stability. Emulsification capacity of SPI 

prepared from alkaline-HTC-treated EE meal was slightly lower than that from original EE meal. One 

needs to bear in mind that SPI protein yield was more than doubled, to 82%, after alkaline-HTC, which 

means the majoritiy of heat-denatured protein in EE meal with PDI 35 was refunctionalized and recovered 

as SPI with emulsification capacity rival to the native proteins. SPI from alkaline-HTC-treated EE meal 

had higher yield (82 vs 73%) and higher emulsification capacity than SPI from white flakes (530 vs 500 g 

oil/g SPI). 

Using extrusion heat-denatured SPI as a model, we showed that heat generated during extrusion 

caused soluble protein to form insoluble protein aggregates. Alkali-dispersing only (without HTC) 

dissolved a small portion of the denatured protein while the rest swelled. HTC without alkali disrupted the 
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large aggregates into smaller ones, resulting a milky homogenous slurry. The viscosity and total number of 

particles in the system increased dramatically. The most significant effect was achieved by HTC with 

alkali addition (0.6 mmol NaOH/g). The protein solubility profile showed that at neutral pH the solubility 

increased from 4% to about 80%, as a result the viscosity (at zero shear rate) increased by more than 1,000 

times compared to the original denatured SPI. HTC with alkali dissolved most of the protein particles, the 

particle count decreased by almost 100 times. HTC and alkali had synergic effect on the 

refunctionalization of heat-denatured protein. 

We concluded that SPI preparation from EE meals is technically feasible. HTC significantly 

improved the major functional properties of EE meals by disrupting the large heat-denatured protein 

aggregates into a stable suspension of smaller aggregates. Adding alkali during HTC can dramatically 

increase refunctionalization. Most of the protein particles dissolved. The treated samples can be used to 

make SPI-like soy protein products with high yield and good functionalities. 

HTC was effective in refunctionalizing the heat-denatured EE meals. This technique can be used 

to produce highly functional EE meal or used as a pretreatment for extracting value-added soy protein 

products, such as SPI-like soy proteins with high protein content, good functionalities, and unique 

characteristics including non-GMO, all natural or other identity-preserved (IP) claims. Such products offer 

the food industry more choices to make specialty food products that health-conscious customers are 

constantly looking for. 
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Recommendations for future research 

Fundamental research. Use purified glycinin and β-conglycinin proteins, pre-denatured by alcohol and 

heat, respectively, to investigate the behaviors of the individual proteins during HTC processing with or 

without alkali. The association/disassociation of subunits and different levels of protein structure changes 

under different conditions can be investigated by using techniques including ultracentrifugation, 

tryptophan fluorescence, and far- or near- Ultraviolet Circular Dichroism (CD). A micro-scale HTC system 

may be used in order to reduce the amount of glycinin and β-conglycinin. 

Processing research. Food-grade ammonia can be used as alkaline agent in the HTC process. 

Ammonia is volatile, can be easily removed by spray-drying. Because there is no acid precipitation or 

neutralization, no additional salt will be introduced in the products nor will pH denaturation occur. Since 

this technique will not involve lowering the pH to the isoelectric point, no methanethiol will form, which 

was found to be only produced during acid precipitation and is one of the most potent odor compounds in 

commercial SPI (Boatright, W. L., Q.X. Lei, and C.J. Stine, Sulfite Formation in Isolated Soy Proteins, J. 

Food Sci. 71:C115–119, 2006). The resulting product should have milder flavor and better functionalities 

compared with existing commercial products. For example, ammonia-HTC can be used in SPI preparation. 

The process can start with alcohol-washed SPC. Right after ammonia-HTC, the fiber fraction in the slurry 

can be removed by centrifugation. The supernatant is spray-dried while hot. By coupling HTC to the 

spray-dryer, most of the energy used in HTC can be utilized. All the processing can be operated in a 

continuous, sealed system. Since HTC is used in the conventional acid-precipitation SPI production 

already, this technique can streamline the conventional process. 
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